انتشار آکوستیکی و تشخیص سیگنال نشتی با نرخ جریان کم با استفاده از روش CFAR

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، آزمایشگاه تحقیقاتی آکوستیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 آزمایشگاه تحقیقاتی آکوستیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران، ایران

3 پژوهشکده فناوری های نو، دانشگاه صنعتی امیرکبیر، تهران، ایران

4 دانشکده مهندسی برق، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

آکوستیک غیرفعال به‌عنوان یک استراتژی مهم جهت تشخیص و نظارت طولانی مدت بر نشتی گاز زیر آب در سایت‌های طبیعی یا در خطوط لوله گاز زیر آب شناخته شده است. توانایی یک سیستم آکوستیکی برای تشخیص نشتی گاز در زیر آب اساساً توسط نسبت سیگنال به نوفه (SNR[i]) صداهای حباب کنترل می­شود. در پژوهش حاضر سعی می­شود تا با استفاده از روش CFAR[ii] امکان تشخیص سیگنال نشتی با نرخ جریان کم و در حضور نوفه شدید فراهم شود. در این راستا از نرم­افزار "بل­هاپ[iii]" جهت مدل­سازی کانال آکوستیکی زیر آب استفاده شده است. مطابق پژوهش­های پیشین، حداقل نرخ جریان نشتی قابل شناسایی برای روش تشخیص مبتنی بر آستانه برابر 2 لیتر بر دقیقه (در فاصله حداکثر 5/0 متری از محل نشتی) و SNR مورد نیاز این روش جهت تشخیص نیز برابر 6 دسی‌بل است. با توجه به قدرت کمتر سیگنال با نرخ جریان کم و درنتیجه SNR پایین­تر نسبت به نرخ بالای جریان نشتی، در سناریوی شبیه­سازی شده نشان داده می­شود که با استفاده از روش CFAR می­توان سیگنال آکوستیکی نشتی با شار پایین را نیز شناسایی کرد. از طرفی عملکرد روش OS-CFAR[iv] بسیار بهتر از روش­های دیگر است و در مقادیر بسیار پایین SNR (تا SNR = -10 dB) نیز امکان شناسایی سیگنال نشتی با شار پایین را فراهم می­کند.
 
[i]. Signal to Noise Ratio
[ii]. Constant False Alarm Rate (CFAR)
[iii]. Bellhop
[iv]. Ordered Statistics CFAR (OS-CFAR)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Acoustic propagation and low flow rate leak signal detection using CFAR method

نویسندگان [English]

  • Abdolreza Ohadi 1
  • Aliasgar Alizadeh 2
  • Mohammad Zareinejad 3
  • Hamidreza Amin Davar 4
1 Professor, Acoustics Research Lab., Mechanical Engineering Department, Amirkabir University of Technology,, Tehran, Iran
2 Acoustics Research Lab., Mechanical Engineering Department, Amirkabir University of Technology,, Tehran, Iran
3 New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran
4 Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

Passive acoustics has been recognized as an important strategy for long-term detection and monitoring of underwater gas leaks in natural sites or in underwater gas pipelines. The ability of an acoustic system to detect underwater gas leaks is primarily controlled by the signal-to-noise ratio (SNR) of bubble sounds. In the current research, it is tried to provide the possibility of detecting the leakage signal with low flow rate and in the presence of strong noise by using the CFAR method. In this regard, "Bellhop" software was used to model the underwater acoustic channel. According to previous researches, the minimum detectable leakage flow rate for the threshold-based detection method is equal to 2 liters per minute (at a maximum distance of 0.5 meters from the leakage location) and the SNR required by this method for detection is also equal to 6 dB. . Considering the lower power of the signal with low flow rate and as a result lower SNR compared to the high rate of leakage current, it is shown in the simulated scenario that by using the CFAR method, the acoustic signal of leakage with low flux can be detected. also identified On the other hand, the performance of the OS-CFAR method is much better than other methods, and it provides the possibility of detecting the leakage signal with low flux even at very low SNR values (up to SNR = -10 dB).

کلیدواژه‌ها [English]

  • Acoustic propagation
  • leaky signal
  • passive acoustics
  • CFAR
  • Bellhop
[1] Pachauri, Rajendra K., Myles R. Allen, Vicente R. Barros, John Broome, Wolfgang Cramer, Renate Christ, John A. Church et al., “Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change”. Ipcc, 2014.
[2] Roelofse, Chantelle, Tiago M. Alves, Joana Gafeira, and O. Omosanya Kamal’deen, "An integrated geological and GIS-based method to assess caprock risk in mature basins proposed for carbon capture and storage", International Journal of Greenhouse Gas Control, 2019, Vol.80, pp.103-122.
[3] Caserini, Stefano, Giovanni Dolci, Arianna Azzellino, Caterina Lanfredi, Lucia Rigamonti, Beatriz Barreto, and Mario Grosso, "Evaluation of a new technology for carbon dioxide submarine storage in glass capsules", International journal of greenhouse gas control, 2017, Vol.60, pp.140-155.
[4] Vielstädte, Lisa, Peter Linke, Mark Schmidt, Stefan Sommer, Matthias Haeckel, Malte Braack, and Klaus Wallmann, "Footprint and detectability of a well leaking CO2 in the Central North Sea: implications from a field experiment and numerical modelling", International Journal of Greenhouse Gas Control, 2019, Vol.84, pp.190-203.
[5] Stork, Anna L., Claire Allmark, Andrew Curtis, J-Michael Kendall, and Don J. White, "Assessing the potential to use repeated ambient noise seismic tomography to detect CO2 leaks: Application to the Aquistore storage site", International Journal of Greenhouse Gas Control, 2018, Vol.71, pp.20-35.
[6] Roelofse, Chantelle, Tiago M. Alves, Joana Gafeira, and O. Omosanya Kamal’deen, "An integrated geological and GIS-based method to assess caprock risk in mature basins proposed for carbon capture and storage", International Journal of Greenhouse Gas Control, 2019, Vol.80, pp.103-122.
[7] Liu, Jingting, Ning Chu, Shijie Qin, and Dazhuan Wu, "Numerical simulations of bubble formation and acoustic characteristics from a submerged orifice: The effects of nozzle wall configurations", Chemical Engineering Research and Design, 2017, Vol.123, pp.130-140.
[8] Berges, Benoit JP, Timothy G. Leighton, and Paul R. White, "Passive acoustic quantification of gas fluxes during controlled gas release experiments", International Journal of Greenhouse Gas Control, 2015, Vol.38, pp.64-79.
[9] Leighton, T. G., and P. R. White, "Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions", Proceedings of the royal society A: mathematical, physical and engineering sciences, 2012, Vol.468, no.2138, pp.485-510.
[10] Ingraham, J. M., Z. D. Deng, Xinya Li, Tao Fu, G. A. McMichael, and B. A. Trumbo, "A fast and accurate decoder for underwater acoustic telemetry", Review of Scientific Instruments, 2014, Vol.85, no.7.
[11] Nikolovska, Aneta, Heiko Sahling, and Gerhard Bohrmann, "Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea", Geochemistry, Geophysics, Geosystems, 2008, Vol.9, no.10.
[12] Leblond, Isabelle, Carla Scalabrin, and Laurent Berger, "Acoustic monitoring of gas emissions from the seafloor. Part I: quantifying the volumetric flow of bubbles", Marine Geophysical Research, 2014, Vol.35, pp.191-210.
[13] Leifer, Ira, and Dajun Tang, "The acoustic signature of marine seep bubbles", The Journal of the Acoustical Society of America, 2007, Vol.121, no.1, EL35-EL40.
[14] Berges, Benoit JP, Timothy G. Leighton, and Paul R. White, "Passive acoustic quantification of gas fluxes during controlled gas release experiments", International Journal of Greenhouse Gas Control, 2015, Vol.38, pp.64-79.
[15] Li, Jianghui, Paul R. White, Ben Roche, Jonathan M. Bull, John W. Davis, Timothy G. Leighton, Michele Deponte, Emiliano Gordini, and Diego Cotterle, "Natural seabed gas leakage--variability imposed by tidal cycles", In OCEANS 2019 MTS/IEEE SEATTLE, IEEE, 2019, pp.1-6.
[16] Von Deimling, J. Schneider, Jens Greinert, N. R. Chapman, Wolfgang Rabbel, and Peter Linke, "Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents", Limnology and Oceanography: Methods, 2010, Vol.8, no.5, pp.155-171.
[17] Minnaert, Marcel, "XVI. On musical air-bubbles and the sounds of running water," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1933, Vol.16, no.104, pp.235-248.
[18] Vazquez, A., Ira Leifer, and R. M. Sánchez, "Consideration of the dynamic forces during bubble growth in a capillary tube", Chemical Engineering Science, 2010, Vol.65, no.13, pp.4046-4054.
[19] Zhang, Yu, Zhu Feng, Xiaobo Rui, Bingpu Wang, Hao Feng, and Xinjing Huang, "Underwater gas flow measurement based on adaptive passive acoustic characteristic frequency extraction", Chemical Engineering Science, 2021, Vol.240, p.116663.
[20] Blackford, Jerry, Henrik Stahl, Jonathan M. Bull, Benoît JP Bergès, Melis Cevatoglu, Anna Lichtschlag, Douglas Connelly et al., "Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage", Nature climate change, 2014, Vol.4, no.11, pp.1011-1016.
[21] Li, Jianghui, Paul R. White, Jonathan M. Bull, and Timothy G. Leighton, "A noise impact assessment model for passive acoustic measurements of seabed gas fluxes", Ocean Engineering, 2019, Vol.183, pp.294-304.
[22] Leighton, T. G., and P. R. White, "Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions", Proceedings of the royal society A: mathematical, physical and engineering sciences, 2012, Vol.468, no.2138, pp.485-510.
[23] Gandhi, Prashant P., and Saleem A. Kassam, "Analysis of CFAR processors in nonhomogeneous background", IEEE Transactions on Aerospace and Electronic systems, 1988, Vol.24, no.4, pp.427-445.
[24] Zhao, Jiafei, Rongkun Jiang, Hao Yang, Xuetian Wang, and Hongmin Gao, "Reconfigurable hardware architecture for mean level and log-t CFAR detectors in FPGA implementations", IEICE Electronics Express, 2019, Vol.16, no.21, pp.20190584-20190584.
[25] Weiss, M., "Analysis of some modified cell-averaging CFAR processors in multiple-target situations", IEEE Transactions on Aerospace and Electronic Systems, 1982, Vol.1, pp.102-114.
[26] Hansen, V. Gregers, and James H. Sawyers, "Detectability loss due to" greatest of" selection in a cell-averaging CFAR", IEEE Transactions on Aerospace and Electronic Systems, 1980, Vol.1, pp.115-118.
[27] Trunk, Gerard V., "Range resolution of targets using automatic detectors", IEEE Transactions on Aerospace and Electronic Systems, 1978, Vol.5, pp.750-755.
[28] Rohling, Hermann, "Radar CFAR thresholding in clutter and multiple target situations", IEEE transactions on aerospace and electronic systems, 1983, Vol.4, pp.608-621.
[29] Rickard, John T., and George M. Dillard, "Adaptive detection algorithms for multiple-target situations", IEEE Transactions on Aerospace and Electronic Systems, 1977, Vol.4, pp.338-343.
[30] Zhao, Jiafei, Rongkun Jiang, Xuetian Wang, and Hongmin Gao, "Robust CFAR detection for multiple targets in K-distributed sea clutter based on machine learning", Symmetry, 2019, Vol.11, no.12, p.1482.
[31] Pierson Jr, Willard J., and Lionel Moskowitz, "A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii", Journal of geophysical research, 1964, Vol.69, no.24, pp.5181-5190.
[32] علیزاده، ع.، اوحدی همدانی، ع.، زارعی­نژاد، م.، "مدل‌سازی انتشار آکوستیکی و تشخیص سیگنال نشتی با استفاده از روش آکوستیک غیرفعال در خلیج فارس"، دوازدهمین کنفرانس بین­المللی آکوستیک و ارتعاشات،  آذر 1401.