بررسی اثر شکل آخال بر شکاف نواری کامپوزیت آلومینا-اپوکسی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه مکانیک، دانشکده فنی و مهندسی، دانشگاه اراک، اراک، ایران

چکیده

کریستال­های فونونیک[i] مواد مرکب متناوبی هستند که از تکرار متناوب یک (یا چند) ماده آخال[ii] در یک زمینه تشکیل می­­شوند. داشتن خصوصیت شکاف نواری و توانایی این مواد در مدیریت انتشار امواج الاستیک موجب شده است تا پژوهش‌های متعددی در سال‌های اخیر به این موضوع اختصاص داده شوند. این مقاله به بررسی انتشار مود درون صفحه‌ای موج الاستیک در کامپوزیت آلومینا-اپوکسی پرداخته است. اثر شکل آخال بر شکاف نواری کامپوزیت به روش اجزاء محدود و با کمک نرم‌افزار کامسول مورد بررسی قرار گرفته است. آرایش شبکه مورد بررسی مربعی است. به‌منظور صحت‌سنجی نتایج، ابتدا ساختار نواری کریستال‌های فونونیک با شکل دایره به‌دست آمده و با روش بسط موج صفحه­ای و مشاهدات تجربی مقایسه شده است. سپس ساختار نواری کریستال‌های فونونیک با شکل آخال مثلث، مربع، پنج ضلعی منتظم، شش ضلعی منتظم، هفت ضلعی منتظم، هشت ضلعی منتظم به‌دست آمده و مقایسه شده‌اند. نتایج به‌دست آمده نشان داد که شکاف نواری کریستال فونونیک با شکل آخال مثلث (محدوده 3/47 تا 1/66 و 9/79 تا 3/90 کیلوهرتز) در مقایسه با شکل‌های دیگر آخال وسیع‌تر است.
 
[i] Phononic Crystal
[ii]. Inclusion


 


 

 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of inclusion shape effect on band gap of alumina-epoxy composite

نویسنده [English]

  • mohammad Bagherinouri
Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak, Iran
چکیده [English]

Phononic crystals are periodic composite materials that are formed by the alternating repetition of one (or more) inclusion in a host. Duo to their band gap characteristic and their ability to manage the propagation of elastic waves, many researches have been devoted to this subject in recent years. This article investigates the propagation of in-plane mode of elastic wave in alumina-epoxy composite. The effect of inclusion shape on composite band gap has been investigated by finite element method with the help of Comsol software. The lattice is assumed to be square. In order to verify the results, first, the band structure of phononic crystal with a circular inclusion shape was obtained and compared with that of plane wave expansion method and experimental results. Then, the band structure of phononic crystals with triangular, square, regular pentagonal, regular hexagonal, regular heptagonal, and regular octagonal inclusion shapes have been obtained. The obtained results showed that the band gap of the phononic crystal with the triangular inclusion shape (frequency range 47.3 to 66.1 and 79.9 to 90.3 kHz) is wider compared to other studied inclusion shapes.

کلیدواژه‌ها [English]

  • Phononic crystal
  • Band Structure
  • Band Gap
  • Inclusion Shape
[1] Krause, Martin, Ulrike Dackermann, and Jianchun Li., "Elastic wave modes for the assessment of structural timber: ultrasonic echo for building elements and guided waves for pole and pile structures", Journal of Civil Structural Health Monitoring, 2015, Vol.5, pp.221-249.
[2] Han, Jae-Hung, Se-Hyun Youn, Ho-Kyung Jeong, and Young-Soon Jang, "Enhanced shock and vibration isolator for the attenuation of low-frequency vibration and high-frequency pyroshock loads", In Third International Conference on Smart Materials and Nanotechnology in Engineering, 2012, Vol.8409, pp.288-295. SPIE, 2012.
[3] Guo, Jin, Rui Zhao, and Yunbo Shi, "Towards Broadband High-Frequency Vibration Attenuation Using Notched Cross-Shaped Metamaterial", Micromachines, 2023, Vol.14, no.2, p.414.
[4] Wei, Qi, Jiawei Xiang, Weiping Zhu, and Hongjiu Hu., "WBEM-based analysis of band structures of solid-solid and fluid-fluid phononic crystals with frequency-independent fundamental solutions", Engineering Analysis with Boundary Elements, 2023, Vol.151, pp.439-456.
[5] Li, Yingli, Gengwang Yan, Xiaohong Dong, Yong Peng, and Xudong Jiang, "Elastic wave propagation and bandgaps mechanism of two-dimensional windmill-like elastic metamaterials", Applied Acoustics, 2023, Vol.208, p.109364.
[6] Chen, C. Q., J. Z. Cui, H. L. Duan, Xi-Qiao Feng, L. H. He, G. K. Hu, M. J. Huang et al., "Perspectives in mechanics of heterogeneous solids", Acta Mechanica Solida Sinica, 2011, Vol.24, no.1, pp.1-26.
[7] Yuan, Wenlou, Akira Nagakubo, Oliver B. Wright, and Hirotsugu Ogi, "High sensitivity biosensing scheme based on a GHz phononic crystal waveguide", Japanese Journal of Applied Physics, 2023, Vol.62, no.SJ, p. SJ1012.
[8] Laude, Vincent, "Principles and properties of phononic crystal waveguides", Apl Materials, 2021, Vol.9, no.8.
[9] Hosseinkhani, Ali, Emad Panahi, Mohammad Farid Khansanami, and Davood Younesian, "A modified star-shaped phononic crystal for the vibration wave filtration in plates: design and experiment", Archive of Applied Mechanics, 2023, Vol.93, no.8, pp.3153-3169.
[10] Lee, Ki Yong, and Wonju Jeon, "Hierarchical phononic crystals for filtering multiple target frequencies of ultrasound", Scientific Reports, 2020, Vol.10, no.1, p.8070.
[11] Allam, Ahmed, Karim Sabra, and Alper Erturk, "3D-printed gradient-index phononic crystal lens for underwater acoustic wave focusing", Physical Review Applied, 2020, Vol.13, no.6, p.064064.
[12] Danawe, Hrishikesh, and Serife Tol., "Broadband subwavelength imaging of flexural elastic waves in flat phononic crystal lenses", Scientific Reports, 2023, Vol.13, no.1, p.7310.
[13] Ruan, Yongdu, and Xu Liang, "2D phononic-crystal Luneburg lens for all-angle underwater sound localization", Acta Acustica, 2022, Vol.6, p.12.
[14] Alrowaili, Z. A., M. Aouassa, M. H. Mahmoud, Karam S. El-Nasser, Hussein A. Elsayed, T. A. Taha, Ashour M. Ahmed, Ali Hajjiah, and Ahmed Mehaney, "Locally resonant porous phononic crystal sensor for heavy metals detection: A new approach of highly sensitive liquid sensors", Journal of Molecular Liquids, 2023, Vol.369, p.120964.
[15] Lucklum, Ralf, Nikolay Mukhin, Bahram Djafari Rouhani, and Yan Pennec, "Phononic crystal sensors: A new class of resonant sensors—Chances and challenges for the determination of liquid properties", Frontiers in Mechanical Engineering, 2021, Vol.7, p.705194.
[16] Gharibi, Hamed, and Ahmed Mehaney, "Two-dimensional phononic crystal sensor for volumetric detection of hydrogen peroxide (H2O2) in liquids", Physica E: Low-dimensional Systems and Nanostructures, 2021, Vol.126, p.114429.
[17] Zhong, Lanhua, Fugen Wu, Xin Zhang, Huilin Zhong, and Shao Zhong, "Effects of orientation and symmetry of rods on the complete acoustic band gap in two-dimensional periodic solid/gas systems", Physics Letters A, 2005, Vol.339, no.1-2, pp.164-170.
[18] Lu, TianJian, GuoQin Gao, ShouLin Ma, Feng Jin, and T. Kim, "Acoustic band gaps in two-dimensional square arrays of semi-hollow circular cylinders", Science in China Series E: Technological Sciences, 2009, Vol.52, no.2, pp.303-312.
[19] Yao, Yuanwei, Zhilin Hou, and Youyan Liu, "The two-dimensional phononic band gaps tuned by the position of the additional rod", Physics Letters A, 2007, Vol.362, no.5-6, pp.494-499.
[20] Liu, Wei, Ji-Wei Chen, and Xian-Yue Su, "Local resonance phononic band gaps in modified two-dimensional lattice materials", Acta Mechanica Sinica, 2012, Vol.28, no.3, pp.659-669.
[21] Wei, Ruiju, Bin Wu, Cunfu He, and Huanyu Zhao, "Phononic band structure in a two-dimensional hybrid triangular graphite lattice", Physica B: Condensed Matter, 2009, Vol.404, no.20, pp.3795-3798.
[22] Wu, Bin, Ruiju Wei, Huanyu Zhao, and Cunfu He, "Phononic band gaps in two-dimensional hybrid triangular lattice", Acta Mechanica Solida Sinica, 2010, Vol.23, no.3, pp.255-259.
[23] Wei, Ruiju, Bin Wu, Huanyu Zhao, Jianbao Li, and Cunfu He, "Breaking bands degeneracy in two-dimensional hybrid triangular lattice phononic crystal: A theoretical and experimental study", Solid state communications, 2010, Vol.150, no.31-32, pp.1463-1466.
[24] Yuan-Wei, Yao, Hou Zhi-Lin, and Liu You-Yan, "Transmission frequency properties of elastic waves along a hetero-phononic crystal waveguide", Chinese Physics Letters, 2007, Vol.24, no.2, p.468.
[25] Yao, Y. W., F. G. Wu, Z. L. Hou, and Y. Y. Liu, "Propagation properties of elastic waves in semi-infinite phononic crystals and related waveguides", The European Physical Journal B, 2007, Vol.58, pp.353-360.
[26] Nouri, Mohammad Bagheri, and Mehran Moradi, "Presentation and investigation of a new two dimensional heterostructure phononic crystal to obtain extended band gap", Physica B: Condensed Matter, 2016, Vol.489, pp.28-32.
[27] Xu, Y. L., X. G. Tian, and C. Q. Chen, "Band structures of two dimensional solid/air hierarchical phononic crystals", Physica B: Condensed Matter, 2012, Vol.407, no.12, pp.1995-2001.
[28] Lei, Lijian, Linchang Miao, Haizhong Zheng, Pengteng Wu, and Minghui Lu, "Band gap extending of locally resonant phononic crystal with outward hierarchical structure", Applied Physics A, 2022, Vol.128, no.6, p.492.
[29] Luo, Haoming, Yue Ren, Anthony Gravouil, Valentina M. Giordano, Qing Zhou, Haifeng Wang, and Anne Tanguy, "Role of a fractal shape of the inclusions on acoustic attenuation in a nanocomposite", APL Materials, 2021, Vol.9, no.8.
[30] Hosseinkhani, Ali, Emad Panahi, Mohammad Farid Khansanami, and Davood Younesian, "A modified star-shaped phononic crystal for the vibration wave filtration in plates: design and experiment", Archive of Applied Mechanics, 2023, Vol.93, no.8, pp.3153-3169.
[31] Chang, Shu-Yeh, Chung-De Chen, Jia-Yi Yeh, and Lien-Wen Chen, "Elastic wave propagation of two-dimensional metamaterials composed of auxetic star-shaped honeycomb structures", Crystals, 2019, Vol.9, no.3, p.121.
[32] Xiao, Si-Hang, Chong Zhang, Qing-Hua Qin, and Hui Wang, "A novel planar auxetic phononic crystal with periodic cookie-shaped cellular microstructures", Mechanics of Advanced Materials and Structures, 2022, Vol.29, no.23, pp.3345-3358.
[33] Alhammadi, Alya, Jin-You Lu, Mahra Almheiri, Fatima Alzaabi, Zineb Matouk, Mohamed Al Teneiji, Rashid K. Abu Al-Rub, Vincenzo Giannini, and Dong-Wook Lee, "Numerical modelling and optimization of two-dimensional phononic band gaps in elastic metamaterials with square inclusions", Applied Sciences, 2021, Vol.11, no.7, p.3124.
[34] Panahi, Emad, Ali Hosseinkhani, Mohammad Farid Khansanami, Davood Younesian, and Mostafa Ranjbar, "Novel cross shape phononic crystals with broadband vibration wave attenuation characteristic: Design, modeling and testing", Thin-Walled Structures, 2021, Vol.163, p.107665.
[35] Miranda Jr, Edson, Clodualdo Aranas Jr, Samuel Rodrigues, Hélio Silva, Gedeon Reis, Antônio Paiva, and José Dos Santos, "Dispersion diagram of trigonal piezoelectric phononic structures with Langasite inclusions", Crystals, 2021, Vol.11, no.5, p.491.
[36] Miranda Jr, Edson Jansen Pedrosa, and José Maria Campos dos Santos, "Phononic band gaps in Al2O3/epoxy composite", In Materials Science Forum, 2018, Vol. 912, pp.112-117. Trans Tech Publications Ltd, 2018.
[37] Krushynska, A.O., Gliozzi, A.S., Fina, A., Krushinsky, D., Battegazzore, D., Badillo‐Ávila, M.A., Acuautla, M., Stassi, S., Noè, C., Pugno, N.M. and Bosia, F., “Dissipative dynamics of polymer phononic materials”, Advanced Functional Materials, 2021, Vol.31, no.30, p.2103424.
[38] Yu, Tianmiao, Fengchun Jiang, Mengxin Cao, Chunhe Wang, Ruonan Qin, and Chunhuan Guo, "Sound insulation of a novel laminated polymer matrix composite containing metallic hollow spheres based on phononic crystal structure design", Polymers for Advanced Technologies, 2022, Vol.33, no.2, pp.601-609.
[39] Oliveira, Vinícius Braga Santos de, Lucas Franco Corrêa Schalcher, José Maria Campos Dos Santos, and Edson Jansen Pedrosa de Miranda Jr., "Wave attenuation in 1-D viscoelastic phononic crystal rods using different polymers", Materials Research, 2023, Vol.26, p.e20220534.
[40] Tanaka, Yukihiro, Yoshinobu Tomoyasu, and Shin-ichiro Tamura, "Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch", Physical Review B, 2000, Vol.62, no.11, p.7387.
[41] Vasseur, Jérôme Olivier, P. A. Deymier, G. Frantziskonis, G. Hong, Bahram Djafari-Rouhani, and Leonard Dobrzynski, "Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media", Journal of Physics: Condensed Matter, 1998, Vol.10, no.27, p.6051.