مروری بر پارامترهای عملکردی میراگرهای ارتعاشی مغناطیسی

نوع مقاله : مقاله مروری

نویسندگان

1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران

2 دانشگاه صنعتی اصفهان، اصفهان، ایران،

چکیده

توسعه میراگرهای ارتعاشی مغناطیسی با هدف جلوگیری از اثرات نامطلوب ارتعاشات در سال‌های اخیر مورد توجه محققان و صنعتگران قرار گرفته است. این میراگرها از منظر ساختار فیزیکی معمولا به سه دسته تک لوله، دو لوله و دوطرفه تقسیم می‌شوند که در حالت‌های مختلف برشی، فشاری، جریانی و ترکیبی مورد استفاده قرار می‌گیرند. سیال‌های مغناطیسی از جمله مواد هوشمند مغناطیسی بوده که در معرض میدان مغناطیسی خواص جریانی متفاوتی نسبت به حالت بدون اعمال میدان مغناطیسی از خود نشان داده و با افزایش میزان وادارندگی، میدان مغناطیسی اعمالی و میزان نیروی لازم برای ایجاد تغییر شکل در سیال افزایش می‌یابد. از میراگرهای ارتعاشی مغناطیسی جهت کاهش ارتعاشات انتقالی به صندلی خودرو، ترمزهای هوشمند در پروتز زانو، میراگرهای مورد استفاده در پل‌ها، صنعت ساختمان‌سازی و صنایع نظامی استفاده می‌شود.


 


 

 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review of the performance parameters of magnetorheological vibration dampers

نویسندگان [English]

  • Mohammad Reza Najafi 1
  • Abbas Motalebi 2
1 Mechanical Engineering Department, Imam Hossein comprehensive University
2 isfahan, Iran
چکیده [English]

Title

A review of the performance parameters of magnetorheological vibration dampers.

Abstract

The development of magnetorheological vibration dampers with the aim of preventing the adverse effects of vibrations has attracted the attention of researchers and industrialists in recent years. From the point of view of physical structure, these dampers are usually divided into three categories: single pipe, double pipe and bilateral, which are used in different shear, pressure, flow and combined modes. Magnetorheological fluids are among smart magnetic materials that exhibit different rheological properties when exposed to a magnetic field compared to the state without the application of a magnetic field, and with the increase in coercivity, the applied magnetic field and the amount of force required to cause deformation in the fluid increases. Magnetorheological vibration dampers are used to reduce vibrations transmitted to car seats, smart brakes in knee prostheses, dampers used in bridges, construction industry and military industries.

کلیدواژه‌ها [English]

  • Vibration damper
  • magnetorheological fluid
  • single pipe damper
  • double pipe damper
[1] Alavi, M. A., and F. Sobhnamayan, "Analysis, Application and Stating Governing Equations of Smart Fluids", In 19th Annual Conference on Mechanical Engineering-ISME2011, 10-12 May, The University of Birjand, Birjand, Iran. 2011.
[2] Ebrahimi, Babak, "Development of hybrid electromagnetic dampers for vehicle suspension systems", 2009.
[3] Kamath, Gopalakrishna M., Melanie K. Hurt, and Norman M. Wereley, "Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers", Smart Materials and Structures, 1996, Vol.5, no.5, p.576.
[4] Yoo, Jin-Hyeong, and Norman M. Wereley, "Quasi-steady axisymmetric Bingham-plastic model of magnetorheological flow damper behavior", In ASME International Mechanical Engineering Congress and Exposition, 2005, Vol.4210, pp.375-380.
[5] Yoo, Jin-Hyeong, and Norman M. Wereley, "Nondimensional analysis of annular duct flow in magnetorheological/electrorheological dampers", International Journal of Modern Physics B, 2005, Vol.19, no.07n09, pp.1577-1583.
[6] Wang, D. H., H. X. Ai, and W. H. Liao, "A magnetorheological valve with both annular and radial fluid flow resistance gaps", Smart materials and structures, 2009, Vol.18, no.11, p.115001.
[7] Hong, S. R., S. B. Choi, Y. T. Choi, and N. M. Wereley, "Non-dimensional analysis and design of a magnetorheological damper", Journal of Sound and Vibration, 2005, Vol.288, no.4-5, pp.847-863.
[8] Wang, Xiaojie, and Faramarz Gordaninejad, "Field-controllable electro-and magneto-rheological fluid dampers in flow mode using Herschel-Bulkley theory", In Smart Structures and Materials 2000: Damping and Isolation, 2000, Vol.3989, SPIE, 2000, pp. 232-243.
[9] Zolfagharian, Mohammad Mehdi, Mohammad Hassan Kayhani, Mahmood Norouzi, and Amir Jalali, "Parametric investigation of twin tube magnetorheological dampers using a new unsteady theoretical analysis", Journal of Intelligent Material Systems and Structures, 2019, Vol.30, no.6, pp.878-895.
[10] Zolfagharian, Mohammad Mehdi, Mohammad Hassan Kayhani, and Mahmood Norouzi, "Manufacturing and Testing of an Optimized Magneto-Rheological Fluid and Modelling of a Twin Tube Magneto-Rheological Damper Using a Modified Non-Newtonian Model Using Analytical Quasi-Static, Analytical Unsteady, Numerical and Experimental Methods", Amirkabir Journal of Mechanical Engineering, 2021, Vol.53, no.3, pp.1373-1400.
[11] Parlak, Zekeriya, Tahsin Engin, and İsmail Çallı, "Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field", Mechatronics, 2012, Vol.22, no.6, pp.890-903.
[12] De Vicente, Juan, Daniel J. Klingenberg, and Roque Hidalgo-Alvarez, "Magnetorheological fluids: a review", Soft matter 2011, Vol.7, no.8, pp.3701-3710.
[13] Sun, Song Jian, "Manufacture and Performance Test of New Type MR Damper", Applied Mechanics and Materials, 2013, Vol.256, pp.2771-2774.
[14] باقری م.، محجوب مقدس س.، مدرس قیصری م.م.، "طراحی و شبیه سازی میراگر "ام آر" برای خودروهای سبک با استفاده از برهم‌کنش چند فیزیکی"، مجله صوت و ارتعاش، 1401، دوره 11، شماره 22، صص. 103-124.
[15] Tak, Radhe Shyam Saini, Hemantha Kumar, Sujatha Chandramohan, and Sujatha Srinivasan, "Design of twin-rod flow mode magneto rheological damper for prosthetic knee application", In AIP Conference Proceedings, 2019, Vol. 2200, no.1. AIP Publishing.
[16] El-Aouar, Walid Hassib, "Finite element analysis-based modeling of magneto rheological dampers", PhD diss., Virginia Tech, 2002.
[17] الهامی م.ر.، نجفی م.ر.، مدرس قیصری م.، "بررسی تحلیلی و عددی اثر اختلاف فشار و تغییر شاخص رفتار در میراگرهای مغناطیسی"، مجله صوت و ارتعاش، 1399، دوره 9، شماره 18، صص. 19-35.
[18] Ferdaus, Mohammad Meftahul, M. M. Rashid, M. M. I. Bhuiyan, and Asan Gani bin Abdul Muthalif, "Design and Performance Evaluation of a Self-Controlled Magneto-Rheological Damper", International Journal of Robotics and Mechatronics, 2014, Vol.1, no.2, pp.74-80.
[19] Hu, Guoliang, Zheng Xie, and Weihua Li., "Optimal design of a double coil magnetorheological fluid damper with various piston profiles", In World congress on structural and multidisciplinary optimisation, 2015, pp.2-7.
[20] Hu, Guoliang, Yun Lu, Shuaishuai Sun, and Weihua Li, "Performance analysis of a magnetorheological damper with energy harvesting ability", Shock and Vibration, 2016, pp.1-10.
[21] Strecker, Zbynek, Jakub Roupec, Ivan Mazurek, Ondrej Machacek, Michal Kubik, and Milan Klapka, "Design of magnetorheological damper with short time response", Journal of Intelligent Material Systems and Structures, 2015, Vol.26, no.14, pp.1951-1958.
[22] Hu, Guoliang, Yun Lu, Shuaishuai Sun, and Weihua Li, "Performance analysis of a magnetorheological damper with energy harvesting ability", Shock and Vibration, 2016, pp.1-10.
[23] Phu, Do Xuan, Jin-Hee An, and Seung-Bok Choi, "A novel adaptive PID controller with application to vibration control of a semi-active vehicle seat suspension", Applied Sciences, 2017, Vol.7, no.10, p.1055.
[24] سلیمی مجرد، ب.، "جداسازی ارتعاشات وارده به محموله های حساس خودروهای باری با استفاده از جداسازهای دربردارنده دمپرهای مگنتورئولوژیکال"، پایان نامه کارشنانسی ارشد، دانشگاه تبریز، 1395.
[25] غلامی وسمه جانی، ر.، "بررسی تحلیلی ضربه گیرهای سیالی مغناطیسی رئولوژیکی"، پایان نامه کارشنانسی ارشد، دانشگاه گیلان، 1389.
[26] مهدیه بروجنی، س.، "به دست آوردن پاسخ دینامیکی هواپیما در لحظه فرود با در نظرگرفتن دمپرهای محتوی سیال MR (Magento Rheological)"، سومین کنفرانس بین المللی آکوستیک و ارتعاشات، 1392.
[27] Zhang, Yanjuan, Jiaxuan Guo, Jianwei Yang, and Xin Li, "Recent structural developments and applications of magnetorheological dampers (mrd): a review", Magnetochemistry, 2023, Vol.9, no.4, p.90.
[28] De Vicente, Juan, Daniel J. Klingenberg, and Roque Hidalgo-Alvarez, "Magnetorheological fluids: a review", Soft matter, 2011, Vol.7, no.8, pp.3701-3710.
[29] Kolekar, Shreedhar, Krishna Venkatesh, Jong-Seok Oh, and Seung-Bok Choi, "Vibration controllability of sandwich structures with smart materials of electrorheological fluids and magnetorheological materials: a review", Journal of Vibration Engineering & Technologies, 2019, Vol.7, pp.359-377.
[30] Ahamed, Raju, Md Meftahul Ferdaus, and Yancheng Li, "Advancement in energy harvesting magneto-rheological fluid damper: A review", Korea-Australia Rheology Journal, 2016, Vol.28, pp.355-379.
[31] Guo-liang, H. U., D. E. N. G. Ying-jun, F. E. N. G. Hai-bo, and L. I. Gang, "Effect of inner magnetorheological valve on dynamic performance of magnetorheological damper", 交通运输工程学报 21, 2021, no.3, pp.289-299.
[32] Qi, H.N., Hu, G.L., Yu, L.F., “Analysis on design and damping performance of MR damper with hybrid fluid flow” J. Mech. Design, 2022, Vol.39, 58–65. (In Chinese)
[33] Deng, Zhaoxue, Xinxin Wei, Xingquan Li, Shuen Zhao, and Sunke Zhu, "Design and multi-objective optimization of magnetorheological damper considering vehicle riding comfort and operation stability", Journal of Intelligent Material Systems and Structures, 2022, Vol.33, no.9, pp.1215-1228.
[34] Zuo, Q., Huang, X.F., Yi, F., “Structure Design and Dynamic Performance Analysis of Magnetorheological Damper with Adjustable Damping Gaps”, Nongye Jixie Xuebao, 2022, Vol.53, 431–440.
[35] Guo, Shuqi, Shaopu Yang, and Cunzhi Pan, "Dynamic modeling of magnetorheological damper behaviors", Journal of Intelligent material systems and structures, 2006, Vol.17, no.1, pp.3-14.
[36] Singru, Pravin, Ayush Raizada, Vishnuvardhan Krishnakumar, Akhil Garg, K. Tai, and Varun Raj, "Modeling of a magneto-rheological (MR) damper using genetic programming", Journal of Vibroengineering, 2017, Vol.19, no.5, pp.3169-3177.
[37] Guan, X. C., P. F. Guo, and J. P. Ou., "Modeling and analyzing of hysteresis behavior of magneto rheological dampers", Procedia Engineering, 2011, Vol.14, pp.2756-2764.
[38] Rossi, Andrea, Francesco Orsini, Andrea Scorza, Fabio Botta, Nicola Pio Belfiore, and Salvatore Andrea Sciuto, "A review on parametric dynamic models of magnetorheological dampers and their characterization methods", In Actuators, 2018, Vol.7, no.2, p.16. MDPI, 2018.
[39] Zapateiro, M., N. Luo, J. Rodellar, and A. Rodríguez, "Modeling and identification of hysteretic dynamics of MR dampers and application to semiactive vibration control of smart structures", In The 14th World Conference on earthquake engineering, Beijing, China. 2008.
[40] Ahn, Kyoung Kwan, Dinh Quang Truong, and Muhammad Aminul Islam, "Modeling of a magneto-rheological (MR) fluid damper using a self tuning fuzzy mechanism", Journal of Mechanical Science and Technology, 2009, Vol.23, pp.1485-1499.
[41] Weber, F., "Bouc–Wen model-based real-time force tracking scheme for MR dampers", Smart Materials and Structures, 2013, Vol.22, no.4, p.045012.
[42] Soltane, Selsebil, Sami Montassar, Othman Ben Mekki, and Rached El Fatmi, "A hysteretic Bingham model for MR dampers to control cable vibrations", Journal of Mechanics of Materials and Structures, 2015, Vol.10, no.2, pp.195-206.
[43] Spencer Jr, BrnF, S. J. Dyke, M. K. Sain, and JDf Carlson, "Phenomenological model for magnetorheological dampers", Journal of engineering mechanics, 1997, Vol.123, no.3, pp.230-238.
[44] Al-Fahdawi, Omar AS, and Luciana R. Barroso, "Adaptive neuro-fuzzy and simple adaptive control methods for full three-dimensional coupled buildings subjected to bi-directional seismic excitations", Engineering Structures, 2021, Vol.232, p.111798.
[45] Stanway, R. S. J. L., J. L. Sproston, and N. G. Stevens, "Non-linear modelling of an electro-rheological vibration damper", Journal of Electrostatics, 1987, Vol.20, no.2, pp.167-184.
[46] Zhou, Qiang, "Two mechanic models for magneto-rheological damper and corresponding test verification", Earthquake Engineering and Engineering Vibration, 2002, Vol.22, no.4, pp.144-150.
[47] Sarigul-Klijn, N., I. Lopez, M. Sarigul-Klijn, and D. Karnopp, "Vibration mitigation using passive active tunable (PAT) system: Experimental aspects", 2007, pp.209-216.
[48] Gandhi, Farhan, and William A. Bullough, "On the phenomenological modeling of electrorheological and magnetorheological fluid preyield behavior", Journal of Intelligent Material Systems and Structures, 2005, Vol.16, no.3, pp.237-248.
[49] Wang, D. H., and W. Hsin Liao, "Magnetorheological fluid dampers: a review of parametric modelling", Smart materials and structures, 2011, Vol.20, no.2, p.023001.
[50] Kwok, N. M., Q. P. Ha, T. H. Nguyen, Jianchun Li, and Bijan Samali, "A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization", Sensors and Actuators A: Physical, 2006, Vol.132, no.2, pp.441-451.
[51] Talebian, Soheil, Yousef Hojjat, Mojtaba Ghodsi, Mohammad Reza Karafi, and Shahed Mirzamohammadi, "A combined Preisach–Hyperbolic Tangent model for magnetic hysteresis of Terfenol-D", Journal of Magnetism and Magnetic Materials, 2015, Vol.396, pp.38-47.
[52] Jin, S., L. Deng, J. Yang, S. Sun, D. Ning, Z. Li, H. Du, and W. H. Li, "A smart passive MR damper with a hybrid powering system for impact mitigation: An experimental study", Journal of Intelligent Material Systems and Structures, 2021, Vol.32, no.13, pp.1452-1461.
[53] Jiang, Min, Xiaoting Rui, Wei Zhu, Fufeng Yang, and Yanni Zhang, "Design and control of helicopter main reducer vibration isolation platform with magnetorheological dampers", International Journal of Mechanics and Materials in Design, 2021, Vol.17, pp.345-366.
[54] Costa, Eduarda, and PJ Costa Branco, "Continuum electromechanics of a magnetorheological damper including the friction force effects between the MR fluid and device walls: analytical modelling and experimental validation", Sensors and Actuators A: Physical, 2009, Vol.155, no.1, pp.82-88.
[55] Jolly, Mark R., Jonathan W. Bender, and J. David Carlson, "Properties and applications of commercial magnetorheological fluids", Journal of intelligent material systems and structures, 1999, Vol.10, no.1, pp.5-13.
[56] Ahmadian, Mehdi, and James A. Norris, "Experimental analysis of magnetorheological dampers when subjected to impact and shock loading", Communications in Nonlinear Science and Numerical Simulation, 2008, Vol.13, no.9, pp.1978-1985.
[57] Pore, R. H., Jadhav, A. A., Dhat, S.E., Pardeshi, A. B., Khedkar, Y. M. A., “Literature review of MR Damper - Design and Analysis”, AEGAEUM J. 8, 2020, Vol.6, no.1 pp.583–93.
[58] Gravatt, John Wilie, "Magneto-rheological dampers for super-sport motorcycle applications", PhD diss., Virginia Tech, 2003.
[59] Khedkar, Yashpal M., Sunil Bhat, and H. Adarsha, "A review of magnetorheological fluid damper technology and its applications", Int. Rev. Mech. Eng, 2019, Vol.13, no.4, pp.256-264.
[60] Poynor, James Conner, "Innovative designs for magneto-rheological dampers", PhD diss., Virginia Tech, 2001.
[61] Yang, Gary, B. F. Spencer Jr, J. D. Carlson, and M. K. Sain, "Large-scale MR fluid dampers: modeling and dynamic performance considerations", Engineering structures, 2002, Vol.24, no.3, pp.309-323.
[62] Daniel, Grivon, Civet Yoan, Pataky Zoltan, and Perriard Yves, "Bingham-papanastasiou and approximate parallel models comparison for the design of magneto-rheological valves", In 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2014, pp.168-173, Ieee, 2014.
[63] Baranwal, Deepak, and T. S. Deshmukh. "MR-fluid technology and its application-a review", International Journal of Emerging Technology and Advanced Engineering, 2012, Vol.2, no.12, pp.563-569
[64] Lord, T., "Designing with MR fluids", Lord Corporation Engineering Note, 1999.
[65] Rahman, Mahmudur, Zhi Chao Ong, Sabariah Julai, Md Meftahul Ferdaus, and Raju Ahamed, "A review of advances in magnetorheological dampers: their design optimization and applications", J. Zhejiang Univ. Sci. A, 2017, Vol.18, no.12, pp.991-1010.
[66] Peng, Gangrou, "Novel shear thickening and magnetorheological materials and their application in controllable electrolytes", 2016.
[67] Buschow, KH Jürgen. Handbook of magnetic materials. Elsevier, 2003.
[69] Odenbach, Stefan, and Steffen Thurm, "Magnetoviscous effects in ferrofluids", In Ferrofluids: magnetically controllable fluids and their applications, 2002, pp.185-201. Berlin, Heidelberg: Springer Berlin Heidelberg.
[70] Ahamed, Raju, Seung-Bok Choi, and Md Meftahul Ferdaus, "A state of art on magneto-rheological materials and their potential applications", Journal of Intelligent Material Systems and Structures, 2018, Vol.29, no.10, pp.2051-2095.
[71] Vinod, Sithara, Reji John, and John Philip, "Magnetorheological properties of sodium sulphonate capped electrolytic iron based MR fluid: a comparison with CI based MR fluid", Smart Materials and Structures, 2016, Vol.26, no.2, p.025003.
[72] Nagdeve, Leeladhar, Ajay Sidpara, V. K. Jain, and J. Ramkumar, "On the effect of relative size of magnetic particles and abrasive particles in MR fluid-based finishing process", Machining Science and Technology, 2018, Vol.22, no.3, pp.493-506.
[73] Wang, Guangshuo, Dexing Zhao, Yingying Ma, Zhixiao Zhang, Hongwei Che, Jingbo Mu, Xiaoliang Zhang, Yu Tong, and Xufeng Dong, "Synthesis of calcium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability", Powder technology, 2017, Vol.322, pp.47-53.
[74] محمد موسی‌زاده، کمال جهانی، و محمد عبداللهی، "شناسایی پارامترهای مدل اسپنسر در دمپر مگنتورئولوژیکال دو سر متحرک برای قطرهای متفاوت پودر آهن-کربونیل سیال مگنتورئوژیک"، مجله مکانیک مدرس، 1398، دوره 19، شماره 5.‎
[75] ذوالفقاریان، م.م.، کیهانی، م.ح.، نوروزی، م.، "ساخت و آزمایش سیال مگنتورئولوژیکال بهینه و مدلسازی دمپر مگنتورئولوژیکال دو مخزنه با استفاده از مدل غیر نیوتونی اصلاح شده جدید و روش های تحلیلی شبه استاتیک، تحلیلی ناپایا، عددی و آزمایشگاهی"، نشریه مهندسی مکانیک امیرکبیر، 1400، دوره 53، شماره 4، صص. 1374-1400.
[76] Kumar, James Sathya, P. Sam Paul, Girish Raghunathan, and Divin George Alex, "A review of challenges and solutions in the preparation and use of magnetorheological fluids", International journal of mechanical and materials engineering, 2019, Vol.14, pp.1-18.
[77] Klabunde, Kenneth J., and Ravichandra S. Mulukutla, "Chemical and catalytic aspects of nanocrystals", Nanoscale Materials in Chemistry, 2001, pp.223-259.
[78] Baek, Dae-Sung, Seok-Hyun Lee, Ki-Young Kim, and Young-Chul Kwon, "Experimental Study on Physical Characteristics along chemical compositions of MR fluid", Journal of the Korea Academia-Industrial cooperation Society, 2013, Vol.14, no.10, pp.4747-4752.
[79] Cruze, Daniel, G. Hemalatha, S. Vincent Sam Jebadurai, L. Sarala, D. Tensing, and SS Judith Emiliah Christy, "A review on the magnetorheological fluid, damper and its applications for seismic mitigation", Civil Engineering Journal, 2018, Vol.4, no.12, pp.3058-3074.
[80] Kazakov, Yu B., N. A. Morozov, and S. A. Nesterov, "Development of models of the magnetorheological fluid damper", Journal of Magnetism and Magnetic Materials, 2017, Vol.431, pp.269-272.
[81] Nordin, NH Diyana, Asan GA Muthalif, M. Khusyaie M. Razali, Abdelrahman Ali, and Ayman Mustafa Salem, "Development and implementation of energy-efficient Magnetorheological Fluid bypass damper for prosthetics limbs using a fuzzy-logic controller", IEEE Access, 2022, Vol.10, pp.18978-18987.
[82] Li, Junhui, Wei Wang, Yang Xia, Hu He, and Wenhui Zhu, "The soft-landing features of a micro-magnetorheological fluid damper", Applied Physics Letters, 2015, Vol.106, no.1.
[83] Malkin, Aleksandr I︠A︡kovlevich, “Rheology fundamentals”, ChemTec publishing, 1994.
[84] Liu, Xin-yun, Da-lin Wu, and Jian Hou, "Design and analysis of a scheme for the naval gun test shell entering the bore", Defence Technology, 2021, Vol.17, no.4, pp.1374-1386.
[85] Huang, Jin, J. Q. Zhang, Yan Yang, and Y. Q. Wei, "Analysis and design of a cylindrical magneto-rheological fluid brake", Journal of Materials Processing Technology, 2002, Vol.129, no.1-3, pp.559-562.
[86] Karakoc, Kerem, Edward J. Park, and Afzal Suleman, "Design considerations for an automotive magnetorheological brake", Mechatronics, 2008, Vol.18, no.8, pp.434-447.
[87] Wessling, Lisa, "Physical modeling of a clutch for heavy vehicles", 2011.
[89] Giuclea, Marius, Tudor Sireteanu, Danut Stancioiu, and Charles W. Stammers, "Modeling of magneto rheological damper dynamic behavior by genetic algorithms based inverse method", The Romanian Academy, 2004, Vol.5, no.1.
[90] Carlson, J. David, Wilfried Matthis, and James R. Toscano, "Smart prosthetics based on magnetorheological fluids", In Smart structures and materials 2001: industrial and commercial applications of smart structures technologies, 2001, Vol.4332, pp.308-316. SPIE, 2001.
[91] Guðmundsson, Ketill Heiðar, "Design of a magnetorheological fluid for an MR prosthetic knee actuator with an optimal geometry", 2011.
[92] Kim, Do Kyung, Maria Mikhaylova, Fu Hua Wang, Jan Kehr, Börje Bjelke, Yu Zhang, Thomas Tsakalakos, and Mamoun Muhammed, "Starch-coated superparamagnetic nanoparticles as MR contrast agents", Chemistry of Materials, 2003, Vol.15, no.23, pp.4343-4351.
[93] Hong, R. Y., B. Feng, L. L. Chen, G. H. Liu, H. Z. Li, Y. Zheng, and D. G. Wei, "Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles", Biochemical Engineering Journal, 2008, Vol.42, no.3, pp.290-300.
[94] Chertok, Beata, Bradford A. Moffat, Allan E. David, Faquan Yu, Christian Bergemann, Brian D. Ross, and Victor C. Yang, "Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors", Biomaterials, 2008, Vol.29, no.4, pp.487-496.
[95] Hiergeist, R., W. Andrä, N. Buske, R. Hergt, I. Hilger, U. Richter, and W. Kaiser, "Application of magnetite ferrofluids for hyperthermia", Journal of magnetism and Magnetic Materials, 1999, Vol.201, no.1-3, pp.420-422.
[96] Ban, Shuai, and Vladislav Korenivski, "Pattern storage and recognition using ferrofluids", Journal of applied physics, 2006, Vol.99, no.8, p.08R907.
[97] Vander Wal, Randall L., and Thomas M. Ticich, "Comparative flame and furnace synthesis of single-walled carbon nanotubes", Chemical Physics Letters, 2001, Vol.336, no.1-2, pp.24-32.
[98] Raj, Kuldip, B. Moskowitz, and R. Casciari, "Advances in ferrofluid technology", Journal of magnetism and magnetic materials, 1995, Vol.149, no.1-2, pp.174-180
[99] Carlson JD, “Sproston JL Controllable fluids in 2000-status of ER and MR fluid technology”, Proc. 7th Int. Conf. New Actuators, 2000, pp.126–30.
[100] Sun, S. S., Ning, D. H., Yang, J., Du, H., Zhang, S. W. & Li, W. H. (2016). A seat suspension with a rotary magnetorheological damper for heavy duty vehicles. Smart Materials and Structures, 25 (10), 105032-1-103032-10.
[101] Sun, S. S., D. H. Ning, Jian Yang, Haiping Du, S. W. Zhang, and W. H. Li., "A seat suspension with a rotary magnetorheological damper for heavy duty vehicles", Smart Materials and Structures, 2016, Vol.25, no.10, p.105032.
[102] Desai, Rangaraj Madhavrao, Mohibb E. Hussain Jamadar, Hemantha Kumar, Sharnappa Joladarashi, S. C. Rajasekaran, and G. Amarnath, "Evaluation of a commercial MR damper for application in semi-active suspension", SN Applied Sciences, 2019, Vol.1, pp.1-10.
[103] Kieburg, Christoffer, Günter Oetter, Martin Laun, Claus Gabriel, and Herbert Steinwender, "MR all-wheel-drive prototype car driving tests and durability requirements for the MR fluids used", In 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions (ERMR), 2008.
[104] Webb, Gregory M., "Exercise apparatus and associated method including rheological fluid brake", U.S. Patent 5,810,696, issued September 22, 1998.
[105] Anon, "Brake Cuts Exercise-Equipment Cost", Design News, 1995, Vol.39, p.4.
[106] Nandy, Anup, Soumik Mondal, Pavan Chakraborty, and Gora Chand Nandi, "Development of a robust microcontroller based intelligent prosthetic limb", In Contemporary Computing: 5th International Conference, IC3 2012, Noida, India, August 6-8, 2012. Proceedings 5, Springer Berlin Heidelberg, 2012, pp.452-462.
[107] Chen, J. Z., and Wei-Hsin Liao, "Design, testing and control of a magnetorheological actuator for assistive knee braces", Smart materials and structures, 2010, Vol.19, no.3, p.035029.
[108] Deffenbaugh, Bruce W., Hugh M. Herr, Gill A. Pratt, and Michael B. Wittig, "Electronically controlled prosthetic knee", U.S. Patent 6,764,520, issued July 20, 2004.
[109] Weiss, K.D. and Duclos, T.G., 1994. Controllable fluids: the temperature dependence of post-yield properties. International Journal of Modern Physics B8(20n21), pp.3015-3032.
[110] Yuan, X., Tian, T., Ling, H., Qiu, T. and He, H., 2019. A review on structural development of magnetorheological fluid damper. Shock and vibration2019.
[111] Wang, J. Y., Y. Q. Ni, J. M. Ko, and B. F. Spencer Jr., "Magneto-rheological tuned liquid column dampers (MR-TLCDs) for vibration mitigation of tall buildings: modelling and analysis of open-loop control", Computers & structures, 2005, Vol.83, no.25-26, pp.2023-2034.
[112] Goncalves, Fernando D., "Characterizing the behavior of magnetorheological fluids at high velocities and high shear rates", PhD diss., Virginia Tech, 2005.
[113] Weber, F., Feltrin, G., Huth, O.J., Swiss federal laboratories for material testing, and D. Research, Switzerland. Guidel Struct Control, 1994.
[114] LaMalva, K. and Hopkin, D. eds., 2021. International handbook of structural fire engineering. Cham: Springer.