ارتعاشات ناشی از پدیده منقاری در آزمون پرش صندلی خلبان در سامانه سورتمه

نوع مقاله : مقاله ترویجی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران

2 دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(علیه السلام)، تهران، ایران

چکیده

سامانه سورتمه اصلی‌ترین جایگزین ارزیابی صحت عملکرد صندلی پران هواپیماهای پرسرعت و جت‌های جنگی بجای تست در حین پرواز است. این سامانه از اجزای مختلفی تشکیل‌شده که اتصال ریل و کفشک از مهم‌ترین بخش‌های آن است. وجود فاصله هوایی بین ریل و کفشک، گرچه امکان حرکت با سرعت‌های بالای سورتمه روی ریل را میسر می‌کند اما ممکن است منجر به انحراف سورتمه و حتی واژگونی این سامانه گردد. پژوهشگران کشورهای دارای این فناوری، با بررسی و تحلیل نیروهای منتقل‌شده بین ریل و کفشک، نشان دادند پدیده منقاری که باعث کنده شدن بخشی از ریل یا کفشک به‌صورت قطره اشک می شود، می تواند ارتعاشات زیادی به سورتمه وارد سازد. نتایج پژوهش های انجام شده در این زمینه نشان می‌دهد محیط ارتعاشی در تست سورتمه تابعی خطی از سرعت بوده و عیوب سطحی می‌تواند منجر به شروع منقاری شود. همچنین بیشترین برخورد ریل با کفشک در نقاط بالایی ریل رخ می‌دهد و استفاده از میراگرهای کابلی در درون پیشرانه و فوم در محفظه داخلی سورتمه، میزان ارتعاشات وارد به سورتمه را کاهش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Gouging phenomenon induced vibrations in the pilot ejection seat test in the sled system

نویسندگان [English]

  • Mohammad Reza Najafi 1
  • Saeed Mahjoub Moghadas 2
1 Mechanical Engineering Department, Imam Hossein comprehensive University
2 Department of Mechanical Engineering, Imam Hosein comprehensive university, Tehran, Iran
چکیده [English]

The sled system is the main alternative for evaluation of the performance of ejection seat of high-speed aircraft and fighter jets instead of in-flight testing. This system consists of various components, of which the connection of rails and slipper is one of the most important parts. Using an air-gap between the rail and the slipper allows the sled to track the rail with high speed easier, but may lead to deflection and even overturning of the sled system. Researchers in countries owning this technology have investigated and analyzed the forces transmission between the rails and slipper, and showed that the gouging phenomenon, which causes separation of part of the rails or slipper in the form of tear, can cause intensive vibrations transmission to the sled body. The results of research in this field show that the vibrating environment of the sled test is a linear function of velocity, and surface defects can lead to the gouging phenomenon. Also, the most collision of rails with slipper occurs at the upper part of the rail track and using wire rope dampers inside the propulsion segment, and foam in the inner container of the sled reduces the intensity of vibrations transmitting to the sled.

کلیدواژه‌ها [English]

  • sled test
  • gouging
  • Vibration
  • slipper
  • ejection seat
[1] Meacham, Michael B., Andrew Kennett, Derik J. Townsend, and Benjamin Marti, "Rocket sled propelled testing of a supersonic inflatable aerodynamic decelerator", In AIAA Aerodynamic Decelerator Systems (ADS) Conference, 2013, p. 1351.
[2] Itoh, M., M. Katayama, and R. Rainsberger, "Computer simulation of an F-4 Phantom crashing into a reinforced concrete wall", WIT transactions on modelling and simulation, 2005, Vol.40.
[3] Zhang, J. H., "Dynamic coupling analysis of rocket propelled sled using multibody-finite element method", Journal of Computer Modelling New Technologies, 2014, Vol.18, pp.25-30.
[4] Szmerekovsky, Andrew Gerard, “The physical understanding of the use of coatings to mitigate hypervelocity gouging considering real test sled dimensions”, Air Force Institute of Technology, 2004.
[5] Hale, Chad S., Anthony N. Palazotto, and William P. Baker, "Engineering approach for the evaluation of mechanical wear considering the experimental Holloman high-speed test track", Journal of engineering mechanics, 2012, Vol.138, no.9, pp.1127-1140.
[6] Cinnamon, John D., Anthony N. Palazotto, and A. G. Szmerekovsky, "Further refinement and validation of material models for hypervelocity gouging impacts", AIAA journal, 2008, Vol.46, no.2, pp.317-327.
[7] Hooser, Michael, "The Holloman High Speed Test Track Gone Soft: Recent Advances in Hypersonic Test Track Vibration Environment", In 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2002, p.3035.
[8] Factor, L. A. M. B. D. A., "Holloman High-Speed Test Track Design Manual", Res. Summ, 2005, Vol.1, no.2.
[9] Hooser, Clinton, "Proposed Hypersonic Air Breathing Test Capability at the Holloman High Speed Test Track", In 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2002, p.3037.
[10] Shockley, Jeremiah, and Scott Zetterstrom, "50 Years of the Central Inertial and GPS Test Facility", In US Air Force T&E Days, 2009, p.1724.
[11] Schoenfeld, William, "Requirements for upgrading the Holloman High Speed Test Track computational fluid dynamics analytical capability", In 21st Aerodynamic Measurement Technology and Ground Testing Conference, 2000, p.2288.
[12] Xiao, Jun, Wei-wei Zhang, Qiang Xue, Wei-bo Gao, and Bo Deng, "Analysis of rocket sled vibration signal transmission based on zigbee application", In Journal of Physics: Conference Series, 2019, Vol.1176, no.6, p.062006. IOP Publishing, 2019.
[13] Fradkin, David, "Use of deep penetration flash radiography in conventional ordnance, and impact dynamics research and development", In 31st Joint Propulsion Conference and Exhibit, 1995, p.2701.
[14] Hsu, Yen-hwa, Alan Langhorn, Donald Ketchen, Leo Holland, David Minto, and David Doll, "Magnetic levitation upgrade to the Holloman high speed test track", IEEE transactions on applied superconductivity, 2009, Vol.19, no.3, pp.2074-2077.
[15] Gragossian, Aram, Diego F. Pierrottet, Jay Estes, Bruce W. Barnes, Farzin Amzajerdian, and Glenn D. Hines. "Navigation Doppler Lidar performance analysis at high speed and long range." In AIAA Scitech 2020 Forum, 2020, p.0369.
[16] Skulsky, Eli David, Andrew Edie Johnson, Jeff Umland, Curtis Padgett, Bill Martin, Stacy Weinstein, Mark Wallace, Adam Steltzner, and Sam Thurman, "Rocket sled testing of a prototype terrain-relative navigation system", 2001.
[17] Morin, Christopher, and Kody Sparks, "Developing a High Altitude Simulating, Dynamic, Ground Test Capability at the Holloman AFB High Speed Test Track", In USAF Developmental Test and Evaluation Summit, 2004, p.6834.
[18] HEGENWALD Jr, JAMES F., and EDWARD A. MURPHY Jr., "Sled Testing the Emergency Escape System: The Human Factor", Journal of Jet Propulsion, 1957, Vol.27, no.9, pp.1027-1028.
[19] Crandall, J. R., W. D. Pilkey, W. Kang, and C. R. Bass, "Sensitivity of Occupant Response Subject to Prescribed Corridors for Impact Testing", Shock and Vibration, 1996, Vol.3, no.6, pp.435-450.
[20] Rock, Stacey, Sami Habchi, Charles Yeiser, Mitchell Oslon, T. Marquette, Stacey Rock, Sami Habchi, Charles Yeiser, Mitchell Oslon, and T. Marquette, "A computational methodology for the rapid simulation of jettisoned aircraft canopy trajectories", In 35th Aerospace Sciences Meeting and Exhibit, 1997, p.169.
[21] Rock, S., and S. Habchi, "Validation of an automated chimera methodology for aircraft escape systems analysis", In 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998, p.767.
[22] Blachowski, Thomas, and Peter Ostrowski, "Update on the development of a laser/fiber optic signal transmission system for the Advanced Technology Ejection Seat (ATES)," In 37th Joint Propulsion Conference and Exhibit, 2001, p.3635.
[23] Liever, Peter, and Sami Habchi, "Separation analysis of launch vehicle crew escape systems", In 22nd Applied Aerodynamics Conference and Exhibit, 2004, p.4726.
[24] Zhu, Yongfeng, Xiang Zhao, and Sijun Zhang, "Computational studies of aircraft Life-Support systems", In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011, p.1045.
[25] Guan, Huanwen, Yongfeng Zhu, Xiang Zhao, and Sijun Zhang. "Aerodynamic Characteristics of Ejection Seat and Occupant", In 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2013, p.386.
[26] Biserod, Hans, Kai Fossumstuen, Erland Orbekk, Dag Tokerud, Michael Kaiserman, Michael Rodack, Wayne Spate, Stanton Winetrobe, Blaine Royce, and Sandy Wallace, "The Hypervelocity Anti-Tank Missile Development Program; Passive Separation Mechanism", In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005, p.4176.
[27] Minto, David W., "The holloman high speed test track hypersonic upgrade program status", In 22 nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Saint Louis, MO., 2002.
[28] Boardman, Brian, Richard Uber, William Baker, and Anthony N. Palazotto, "Modeling Nonlinear Heat Transfer for Pin-on-Disc Sliding System", In AIAA Scitech 2020 Forum, 2020, p.0973.
[29] Tachau, R. D. M., C. H. Yew, and T. G. Trucano, "Gouge initiation in high-velocity rocket sled testing", International journal of impact engineering, 1995, Vol.17, no.4-6, pp.825-836.
[30] Cinnamon, John D., and Anthony N. Palazotto, "Analysis and simulation of hypervelocity gouging impacts for a high speed sled test", International journal of impact engineering, 2009, Vol.36, no.2, pp.254-262.
[31] Wuertemberger, Lauren B., “Predicting the Wear of High Speed Rocket Sleds”, AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING AND MANAGEMENT, 2012.
[32] Laird, David, and Anthony Palazotto, "Temperature effects on the gouging and mixing of solid metals during hypervelocity sliding impact", In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002, p.1691.
[33] Laird, David J., and Anthony N. Palazotto, "Effect of temperature on the process of hypervelocity gouging", Aiaa Journal, 2003, Vol.41, no.11, pp.2251-2260.
[34] DeLeon, Armando, and Anthony N. Palazotto, "Shock Wave Investigation of High Speed Asperity Collision with Finite Element Modeling", In AIAA Scitech 2020 Forum, 2020, p.0316.
[35] Szmerekovsky, Andrew G., and Anthony N. Palazotto, "Structural dynamic considerations for a hydrocode analysis of hypervelocity test sled impacts", AIAA journal, 2006, Vol.44, no.6, pp.1350-1359.
[36] Palazotto, Anthony, and Stephen Meador, "Consideration of wear at high velocities using a hydrocode", AIAA journal, 2012, Vol.50, no.3, pp.746-751.
[37] Watt, T. J., and D. L. Bourell, "Sliding instabilities and hypervelocity gouging", IEEE Transactions on Plasma Science, 2010, Vol.39, no.1, pp.162-167.
[38] Cinnamon, John D., and Anthony N. Palazotto, "Further validation of a general approximation for impact penetration depth considering hypervelocity gouging data", International journal of impact engineering, 2007, Vol.34, no.8, pp.1307-1326.
[39] Watt, Trevor J., Charys E. Clay, Philip M. Bassett, and David L. Bourell, "The effect of surface indentations on gouging in railguns", WEAR, 2014, Vol.310, no.1-2, pp.41-50.
[40] Zhu, Rengui, Qian Zhang, Zhiyuan Li, Longwen Jin, and Ruilin Wang, "Impact physics model and influencing factors of gouging for electromagnetic rail launcher", In 2014 17th International Symposium on Electromagnetic Launch Technology, IEEE, 2014, pp.1-6.
[41] Wu, Jin-guo, Bo Tang, Qing-hua Lin, Hai-yuan Li, and Bao-ming Li., "3D numerical simulation and analysis of railgun gouging mechanism", Defence technology, 2016, Vol.12, no.2, pp.90-95.
[42] Liu, Jun, Weihua Wang, Feng Zhao, and Mingsheng Gong, "Comparison of two rocket sled slipper materials for resistance to wear", In AIP Conference Proceedings, AIP Publishing LLC, 2017, Vol.1890, no.1, p.040119.
[43] DeLeon, Armando, William Baker, and Anthony Palazotto, "Evaluation of a Nonlinear Melt Region Produced Within a High Speed Environment", In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, p.0187.
[44] Pierre, C., A. A. Ferri, and E. H. Dowell, "Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method", 1985, pp.958-964.
[45] Zhi-wei, D. O. U., and S. H. E. N. G. Suo-xiu, "The Application Research of Metal Rubber Technology [J].", Aircraft Design, 2010, Vol.5.
[46] Zhao, C., Y. J. He, and H. Zhang, "Application research of metal rubber, Noise Vibr", Control (in Chinese), 2006, Vol.5, p.45.
[47] Guangqi, Han, A. I. Ren Yin, and Jie Zhenzhen, "Simulation analysis of rocket sled vibration reduction platform [J]", Journal of experiment and test, 2006, Vol.2, pp.10-13.
[48] Ruan Yu Tang, “Finite element structural analysis of a machine gun based on ANSYS [[D]”. Nanjing: Nanjing University of Science and Technology, 2007, pp.17-37.
[49] Holloman, A. F. B., "Honeywel", Advanced Guidance Technologe Advanced Inertial Measurement Unit Laboratory and S1ed Tests, 1992.
[50] Gao, Wei, and N. J. Kessissoglou, "Dynamic response analysis of stochastic truss structures under non-stationary random excitation using the random factor method", Computer Methods in Applied Mechanics and Engineering, 2007, Vol.196, no.25-28, pp.2765-2773.
[51] Rodney, David, Benjamin Gadot, Oriol Riu Martinez, Sabine Rolland Du Roscoat, and Laurent Orgéas, "Reversible dilatancy in entangled single-wire materials", Nature materials, 2016, Vol.15, no.1, pp.72-77.
[52] Turnbull, Dennis, Clinton Hooser, Michael Hooser, and Jack Myers, "Soft sled test capability at the holloman high speed test track", In US Air Force T&E Days, 2010, p.1708.
[53] Hooser, Michael, "Soft Sled-the Low Vibration Sled Test Capability at the Holloman High Speed Test Track", In 2018 Aerodynamic Measurement Technology and Ground Testing Conference, 2018, p.3872-3882.
[54] Ding Wenjing compilation, “Theory of vibration reduction [M]”, Beijing: Tsinghua University press, 2014, pp.63-91.
[55] Ding Chun Tong, “Mechanical simulation of rocket sled test damping system [J]”, naval electronic engineering, 2012, Vol.8 pp.87-89.
[56] Bosmajian, Neil, David Minto, and Leo Holland, "Status of the magnetic levitation upgrade to the Holloman High Speed Test Track", In 21st Aerodynamic Measurement Technology and Ground Testing Conference, 2000, p.2289.
[57] Minto, David, "Recent increases in hypersonic test capabilities at the Holloman High Speed Test Track", In 38th Aerospace Sciences Meeting and Exhibit, 2000, p.154.
[58] Gurol, Husam, Don Ketchen, Leo Holland, Mike Hooser, David Minto, Neil Bosmajian, and Russell M. Cummings, "Status of the Holloman high speed maglev test track (HHSMTT)", In 30th AIAA aerodynamic measurement technology and ground testing conference, 2014, p.2655.
[59] Chen, Shi-yu, Yue-lei He, and Zai-wei Li, "Analysis of the Rocket Sled Track Irregularity in Time and Frequency Domains," In CICTP 2014: Safe, Smart, and Sustainable Multimodal Transportation Systems, 2014, pp.111-118.
[60] Lamb, James L., "Critical velocities for rocket sled excitation of rail resonance", Johns Hopkins APL technical digest, 2000, Vol.21, no.3, pp.448-458.
[61] Hooser, Michael, "Soft Sled-the Low Vibration Sled Test Capability at the Holloman High Speed Test Track", In 2018 Aerodynamic Measurement Technology and Ground Testing Conference, 2018, p.3872.
[62] Zhang, Jian Hua, and Shou Shan Jiang, "Definition of boundary conditions and dynamic analysis of rocket sled and turntable", In Applied Mechanics and Materials, Trans Tech Publications Ltd, 2011, Vol.52, pp.261-266.
[63] Hooser, M., Hooser, C., “103X-A1 Vibration Analysis Report”, HHSTT digital archive, 28 Dec 2016
[64] Hooser, M., Hooser, C., “Soft Sled Design Evaluation Report”, 25 Feb 2016
[65] XIAO, JUN, WEI-WEI ZHANG, QIANG XUE, WEI-BO GAO, and LIN-RUI ZHANG, "Modal Analysis for SingleTrack Sled", DEStech Transactions on Engineering and Technology Research pmsms, 2018.
[66] Jin, Long-wen, Qian Zhang, Bin Lei, and Zhi-yuan Li, "Simulation and research on 3D gouging model based on Abaqus/Explicit", In 2012 16th International Symposium on Electromagnetic Launch Technology, IEEE, 2012, pp. 1-5.
[67] Buentello Hernandez, Rodolfo G., and Anthony N. Palazotto, "3D Finite Element Modeling of High-Speed Sliding Wear", In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013, p.1505.
[68] Turnbull, Dennis, Clinton Hooser, Michael Hooser, and Jack Myers, "Soft sled test capability at the holloman high speed test track", In US Air Force T&E Days, 2010, p.1708.