بررسی تحقیقات انجام شده در زمینه طراحی سیستم دیسک و پره

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشگاه جیرفت

2 دانشگاه صنعتی اصفهان

چکیده

سیستم دیسک و پره نوعی سیستم دینامیکی قوی است که ارتعاشات زیادی را تحمل می‌کند. این سیستم در مجموعه‌های گوناگونی چون پمپ‌ها، فن‌ها، موتورهای جت و هواپیما، کشتی و توربین‌های گاز و بخار کاربردهای فراوانی دارد. در این مقاله تاریخچة مدلسازی، شبیه‌سازی و تحلیل ارتعاشات سیستم دیسک و پره با تأکید بر پیشرفت‌های انجام‌شده در دهة گذشته، که سبب پیش‌بینی بهتر و درک ماکزیمم پاسخ سیستم دیسک و پره نامیزان می‌شود، بررسی شده است. برای این منظور نخست دربارة ارتعاشات سیستم‌های میزان و نامیزان بحث و چندین مدل استفاده‌شده در مطالعات پیشین ذکر شده است. در ادامه، ماکزیمم ضرایب به‌دست آمده برای سیستم‌های نامیزان آورده‌شده و روش‌های کاهش ماکزیمم پاسخ بیان شده است. در نهایت مشکلات و محدودیت‌های طراحی این سیستم‌ها در صنعت بررسی شده است. نتایج حاصل حاکی است که پاسخ ارتعاشی سیستم به وجود نامیزانی حساس است و با تغییر اندک خصوصیات هر پره، ماکزیمم پاسخ به میزان قابل توجهی افزایش می‌یابد. همچنین استفاده از راهبرد نامیزانی عمدی، تغییر آرایش چیدمان پره‌ها، استفاده از پیزوالکتریک و دمپر اصطکاکی برای کاهش ماکزیمم پاسخ سیستم مناسب است. کارکرد در محیط با دمای بالا، تنش بالا و ارتعاش قسمت‌های گوناگون از عوامل مهم شکست پره‌های سیستم به‌شمار می‌رود که در طراحی این‌گونه سیستم‌ها باید مد نظر قرار گیرند.

کلیدواژه‌ها

موضوعات


[1] Whitehead, D. S. “Effect of Mistuning on the Vibration of Turbo machine Blades Induced by Wakes.” Journal of Mechanical Engineering Science, Vol. 8, No. 1, 1966, pp. 15–21.
[2] Wagner, J. T. “Coupling of Turbo machine Blade Vibrations through the Rotor.” Journal of Engineering for Power, Vol. 89, No. 3, 1967, pp. 502–512.
[3] Dye, R. C. F., T. A. Henry. “Vibration Amplitudes of Compressor Blades Resulting from Scatter in Blade Natural Frequencies.” Journal of Engineering for Power, Vol. 91, No. 3, 1969, pp. 182–188.
[4] Ewins, D. J. “The Effects of Detuning Upon the Forced Vibrations of Bladed Disks.” Journal of Sound and Vibration, Vol. 9, No. 1, 1969, pp. 65–79.
[5] Ewins, D. J. “A Study of Resonance Coincidence in Bladed Discs.” Journal of Mechanical Engineering Science, Vol. 12, No. 5, 1970, pp. 305–312.
[6] Ewins, D. J. “Vibration Characteristics of Bladed Disc Assemblies.” Journal of Mechanical Engineering Science, Vol. 15, No. 3, 1973, pp. 165–186.
[7] Ewins, D. J. “Vibration Modes of Mistuned Bladed Disks.” Journal of Engineering for Power, Vol. 98, No. 3, 1976, pp. 349–355.
[8] Srinivasan, A. V. “Vibrations of Bladed-Disk Assemblies, a Selected Survey.” Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol. 106, No. 2, 1984, pp. 165–168.
[9] Srinivasan, A. V. “Flutter and Resonant Vibration Characteristics of Engine Blades.” Journal of Engineering for Gas Turbines and Power, Vol. 119, No. 4, 1997, pp. 742–775.
[10] Slater, J. C., G. R. Minkiewicz, A. J. Blair. “Forced Response of Bladed Disk Assemblies, a Survey.” Shock and Vibration Digest, Vol. 31, No. 1, 1999, pp. 17–24.
[11] Castanier M. P., C. Pierre. “Modeling and analysis of mistuned bladed disk vibration: status and emerging directions.” Journal of Propulsion and Power, Vol. 22 No. 2, 2006, pp. 384–396.
[12] Rahimi M, S. Ziaei-Rad. “Uncertainty treatment in forced response calculation of mistuned bladed disk.” J. Math Comput Simulat, Vol. 80, 2010, pp.1746–1757.
[13] Salhi B., J. Lardies, M. Berthillier. “Identification of modal parameters and aeroelastic coefficients in bladed disk assemblies.” Mechanical Systems and Signal Processing, Vol. 23, 2009, pp.1894–1908.
[14] Yan Y. J., P. L. Cui, H. N. Hao. “Vibration mechanism of a mistuned bladed-disk.” Journal of Sound and Vibration, Vol. 317, 2008, pp. 294–307.
[15] Cha D., A. Sinha. “Statistics of responses of a mistuned and frictionally damped bladed disk assembly subjected to white noise and narrow band excitations.” Probabilistic Engineering Mechanics, Vol. 21, 2006, pp. 384–396.
[16] He, Zh., B. I. Epureanu, Ch. Pierre, “Parametric study of the aeroelastic response of mistuned bladed disks.” Computers and Structures, Vol. 85, 2007, pp. 852–865.
[17] Vargiu, P., C. M. Firrone, S. Zucca, M. M. Gola. “A reduced order model based on sector mistuning for the dynamic analysis of Mistuned bladed disks.” International Journal of Mechanical Sciences, Vol. 53, 2011, pp. 639–646.
[18] Petrov E. P., K. Y. Sanliturk, D. J. Ewins. “A New Method for Dynamic Analysis of Mistuned Bladed Disks Based on the Exact Relationship between Tuned and Mistuned Systems.” Journal of Engineering for Gas Turbines and Power, Vol. 124, JULY 2002, pp. 586-597.
[19] Jung, Ch., K. D'Souza, B. I. Epureanu. “Nonlinear amplitude approximation for bilinear systems.” Journal of Sound and Vibration, Vol. 333, 2014, pp. 2909–2919.
[20] Whitehead, D. S. “The Maximum Factor by Which Forced Vibration of Blades Can Increase Due to Mistuning.” Journal of Engineering for Gas Turbines and Power, Vol. 120, No. 1, 1998, pp. 115–119.
[21] Rivas-Guerra A. J., M. P. Mignolet. “Maximum Amplification of Blade Response due to Mistuning: Localization and Mode Shape Aspects of the Worst Disks.” Journal of Turbomachinery, Vol. 125, 2003, pp. 442-454.
[22] Shin S. H., M. K. Kang, H. H. Yoo. “Mistuned coupling stiffness effect on the vibration localization of cyclic systems.” Journal of Mechanical Science and Technology, Vol. 22, 2008, pp. 269–275.
[23] Raeisi, E., S. Ziaei-Rad. “The Worst Response of Mistuned Bladed Disk System Using Genetic Algorithm.” Amir Kabir journal/ Mech, Vol. 44, No. 2, winter 2013 (In Persian).
[24] Raeisi, E., S. Ziaei-Rad. “The worst response of mistuned bladed disk system using neural network.” Meccanica, Vol. 48, Issue 2, 2013, pp. 367-379.
[25] Petrov E. P., D. J. Ewins. “Analysis of the Worst Mistuning Patterns in Bladed Disc Assemblies.” Presented at the Turbo Expo 2001, New Orleans, LA, Jun 2001, 4–7, Paper 2001-GT-0292.
[26] Petrov E.P., D. J. Ewins. “Analysis of the Worst Mistuning Patterns in Bladed Disk Assemblies.” J. Turbomach, Vol. 125(4), 2003, pp. 623–632.
[27] Bladh R., M. P. Castanier, P. Christophe. “Component Mode Modeling of Mistuned Bladed Disk Vibration.” 5th National Turbine Engine High Cycle Fatigue Conference, Chandler, Arizona, 2000.
[28] Petrov E. P., K. Y. Sanliturk, D. J. Ewins. “A new method for dynamic analysis of mistuned bladed disks based on the exact relationship between tuned and mistuned systems.” Transactions of the ASME, Vol. 124, 2002, pp. 586-597.
[29] Lim, S. H. “Dynamic Analysis and Design Strategies for Mistuned Bladed Disk.” PhD Thesis, University of Michigan, Mechanical Department, 2005.
[30] Chiu, Y. J., Sh. Ch. Huang. “The influence on coupling vibration of a rotor system due to a mistuned blade length.” Journal of Mechanical Sciences, Vol. 49, 2007, pp. 522–532.
[31] Chan, Y. J., D. J. Ewins. “Management of the variability of vibration response levels in mistuned bladed discs using robust design concepts. Part 1 Parameter design.” J. Mechanical Systems and Signal Processing, Vol. 24, 2010, pp. 2777–2791.
[32] Rotea, M. A., F. J. D'Amato. “Efficient algorithms for Mistuning Analysis.” 15th triennial world congress, Barcelona, Spain, 2003.
[33] Yoo, H. H., J. K. Kim, D. J. Inman. “Vibration localization of simplified mistuned cyclic structures undertaking external harmonic force.” Journal of Sound and Vibration, Vol. 261, 2003, pp. 859–870.
[34] Yan, Y. J., P. L. Cui, H. N. Hao. “Vibration mechanism of a mistuned bladed-disk.” Journal of Sound and Vibration, Vol. 317, 2008, pp. 294–307.
[35] Basu, P., J. H. Griffin. “The Effect of Limiting Aerodynamic and Structural Coupling in Models of Mistuned Bladed Disk Vibration.” ASME J. Vib., Acoust., Stress, Reliab. Des., Vol. 108, 1986, pp. 132–139.
[36] Kaiser, T., R. S. Hansen, N. Nguyen, R. W. Hampton, D. Muzzio, M. K. Chargin, R. Guist, K. Hamm, L. Walker. “Experimental/Analytical Approach to Understanding Mistuning in a Transonic Wind Tunnel Compressor.” NASA Technical Memorandum, No. 108833, 1994, pp. 1–13.
[37] EL-Bayoumy, LE, A. E. Srinivasan. “Influence of mistuning on rotor blade vibration.” AIAA Journal, Vol. 13, 1975, pp. 460–464.
[38] Ewins, D., ZC. Han. “Resonant vibration levels of a mistuned bladed disk.” ASME J. Vib. Acoust, Vol. 106, 1984, pp. 211–217.
[39] Griffin, J. H., T. M. Hoosac. “Model development and statistical investigation of turbine blade mistuning.” J. Vib Acoust Stress, Vol. 106, 1984, pp. 204–210.
[40] Sanliturk, K. Y., M. Imregun, D. J. Ewins. “Statistical analysis of random mistuning of bladed assemblies.” J. Mech. Eng. C432, Vol. 110, 1992, pp. 51–57.
[41] Raeisi-Estabragh, E., S. Ziaei-Rad, H. Dehghan. “Using neural network and genetic algorithm to obtain maximum response of mistuned system.” Journal of solid and fluid mechanics, Vol. 1, No. 2, 2011, pp. 37-46.
[42] Poursaeidi, E., M. Sanaieei, H. Bakhtyari. “Life Estimate of a Compressor Blade through Fractography.” IJE Transactions A: Basics, Vol. 26, No. 4, April 2013, pp. 393-400.
[43] Castanier, M. P., C. Pierre. “Using intentional mistuning in the design of turbomachinery rotors.” AIAA Journal, Vol. 40, 2002, pp. 2077–2086.
[44] Hou, J. F., C. Cross. “Minimizing blade dynamic response in a bladed disk through design optimization.” AIAA Journal, Vol. 43, 2005, pp. 406–412.
[45] Laxalde, D., C. Gibert, F. Thouverez. “Experimental and numerical investigations of friction rings damping of blisks.” ASME Conference Proceedings (43154), 2008, pp.469–479.
[46] Sinha, S. K. “Dynamic characteristics of a flexible bladed-rotor with Coulomb damping due to tip-rub.” Journal of Sound and Vibration, Vol. 273, 2004, pp. 875–919.
[47] Gruin, M., F. Thouverez, L. Blanc, P. Jean. “Nonlinear dynamics of a bladed dual-shaft.” European Journal of Computational Mechanics, Vol. 20 (1–4), 2011, pp. 207–225.
[48] Avalos, J., M. P. Mignolet. “On damping entire bladed disks through dampers on only a few blades.” Journal of Engineering for Gas Turbines and Power, Vol. 132, 2010, pp. 092503–092510.
[49] Cross, C.J., S. Fleeter. “Shunted piezoelectrics for passive control of turbomachine blading flow-induced vibrations.” Smart Materials and Structures, 2002, 11 2, 239.
[50] Yu, H., K. W. Wang. “Piezoelectric networks for vibration suppression of mistuned bladed disks.” Journal of Vibration and Acoustics, Vol. 129, 2007, pp. 559–566.
[51] Yu, H., K. W. Wang. “Vibration suppression of mistuned coupled-blade-disk systems using piezoelectric circuitry network.” Journal of Vibration and Acoustics, Vol. 131, 2009, pp. 021008–021012.
[52] Mokrani, B., R. Bastaits, R. Viguie, A. Preumont. “Vibration damping of turbomachinery components with piezoelectric transducers: theory and experiment.” ISMA2012 International Conference on Noise and Vibration Engineering, Leuven, Belgium, 2012.
[53] Zhou, B., F. Thouverez, D. Lenoir. “An adaptive control strategy based on passive piezoelectric shunt techniques applied to mistuned bladed disks.” Journal of Computational and Applied Mathematics, Vol. 246, 2013, pp. 289–300.
[54] Zhou, B., F. Thouverez, D. Lenoir. “Essentially nonlinear piezoelectric shunt circuits applied to mistuned bladed disks.” Journal of Sound and Vibration, Vol. 333, 2014, pp. 2520–2542.
[55] Yu, H., K. W. Wang, J. Zhang. “Piezoelectric networking with enhanced electromechanical coupling for vibration delocalization of mistuned periodic structures-Theory and experiment.” Journal of Sound and Vibration, Vol. 295, 2006, pp. 246–265.
[56] Azevedo, C. R. F., A. Sinátora. “Erosion-fatigue of steam turbine blades.” Engineering Failure Analysis, Vol. 16, 2009, pp. 2290–2303.
[57] Kubiak, Sz. J., G. Gonzalez, D. Juárez, J. Nebradt, F. Sierra, J. Nebradt. “Failure analysis of a 28MW geothermal turbine.” Journal of Failure Analysis and Prevention, Vol. 4(3), 2004, pp. 47-51.
[58] Wei-Ze, W., X. Fu-Zhen, Zh. Kui-Long, Tu. Shan-Tung. “Failure analysis of the final stage blade in steam turbine.” Engineering Failure Analysis, Vol. 14(4), 2007, pp. 632-641.
[59] Mazur, Z., R. García-Illescas, J. Porcayo-Calderón. “Last stage blades failure analysis of a 28MW geothermal turbine.” Engineering Failure Analysis, Vol. 16(4), 2009, pp. 1020-1032.
[60] Das, G., S. G. Chowdhury, A. K. Ray, S. K. Das, D. K. Bhattacharya. “Turbine blade failure in a thermal power plant.” Engineering failure analysis, Vol. 10, 2003, pp. 85-90.
[61] Hata, S., N. Nagai, T. Yasui, Mitsubishi Heavy Industries, Ltd., Hiroshima, Japan, and Hiroshi Tsukamoto, “Investigation of Corrosion Fatigue Phenomena in Transient Zone and Preventive Coating and Blade Design Against Fouling and Corrosive Environment for Mechanical Drive Turbines”, 37th Turbomachinery Symposium Proceedings, 2008, Texas A&M, Texas.
[62] Mukhopadhyay, N. K., S. Ghoshchowdhury, G. Das, S. K. Chattaroj, S. K. Das, D. K. Bhattacharya. “An investigation of the failure of low pressure steam turbine blades.” Engineering Failure Analysis, Vol. 5, 1998, pp. 181-193.
[63] Ahmad, M., M. Casey, N. Surken. “Experimental assessment of droplet impact erosion resistance of steam turbine blade materials.” Wear, Vol. 267, 2009, pp. 1605–1618.