مروری بر روش های جداسازی اسپرم با استفاده از امواج صوتی در درمان ناباروری

نوع مقاله : مقاله مروری

نویسندگان

1 گروه طراحی کاربردی، دانشگده مکانیک دانشگاه صنعتی خواجه نصیر الدین طوسی

2 دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

انتخاب اسپرم با کیفیت یک فرایند حائز اهمیت در روش­های کمک باروری است. افزایش درصد موفقیت روش­های کمک باروری با استفاده از روش­های مبتنی‌بر فناوری میکروسیال فعال و غیرفعال توجه محققان را به خود جلب کرده است. در این پژوهش به مرور کلی انواع روش­های جداسازی اسپرم پرداخته ­شد. روش­های جداسازی اسپرم براساس بارزترین ویژگی اسپرم­ها یعنی تحرک، مورد توجه قرار گرفت و روش­های کلینیکی و روش­های مبتنی‌بر فناوری میکروسیال در این حوزه مورد ارزیابی قرار گرفت. در میان این روش‌ها، روش­های مبتنی‌بر فناوری میکروسیال صوتی به‌دلیل مزایای منحصربه‌فردی که درخصوص کاربردهای بیولوژیکی دارد اعم از کنترل­پذیری بالا، زیست‌سازگاری و ویژگی­های غیرتهاجمی به‌طور خاص مورد بحث قرار گرفت. نیروهای وارد بر یک اسپرم درون میکروکانال تحت تأثیر امواج صوتی و سیال بیان گردید و به بررسی تأثیرات این نیروها بر روی سلول­های اسپرم پرداخته شد. نتایج تحقیقات حاکی از آن است که عملگرهای امواج صوتی می­توانند به‌صورت کارایی در طراحی و ساخت پلتفرم‌های جداسازی اسپرم و لقاح مصنوعی مورد استفاده قرار گیرند.


 


 

 
 

کلیدواژه‌ها


عنوان مقاله [English]

Review of methods for sperm separation using acoustic waves in the treatment of infertility

نویسندگان [English]

  • naser naserifar 1
  • Donya Shahhoseini 2
1 K.N. Toosi University of Technology
2 K. N. Toosi University of Technology
چکیده [English]

The selection of high-quality sperm is an essential process in assisted reproductive techniques. The increase in the success rate of these techniques using active and passive microfluidic technologies has attracted the attention of researchers. In this study, an overview of various sperm separation methods was provided. Sperm separation methods based on the most prominent sperm feature, motility, were discussed, and clinical and microfluidic-based methods were evaluated in this field. Among these methods, microfluidic-based acoustic wave methods were discussed explicitly due to their unique advantages in biological applications, such as high controllability, biocompatibility, and non-invasive characteristics. The forces exerted on a sperm cell inside a microchannel under the influence of acoustic waves and fluid were investigated, and the effects of these forces on sperm cells were examined. The research results indicate that acoustic wave actuators can be efficiently used in the design and construction of sperm separation platforms and artificial insemination.

کلیدواژه‌ها [English]

  • Acoustofluidic
  • Separation
  • Infertility
  • Surface Acoustic Waves
  • Bulk Acoustic Waves
[1] Vander Borght, Mélodie, and Christine Wyns, "Fertility and infertility: Definition and epidemiology", Clinical biochemistry, 2018, Vol.62, pp.2-10.
[2] Gai, Junyang, Reza Nosrati, and Adrian Neild, "High DNA integrity sperm selection using surface acoustic waves", Lab on a Chip, 2020, Vol.20, no.22, pp.4262-4272.
[3] Swain, J. E., D. Lai, S. Takayama, and G. D. Smith, "Thinking big by thinking small: application of microfluidic technology to improve ART", Lab on a Chip, 2013, Vol.13, no.7, pp.1213-1224.
[4] Gao, Yuan, Mengren Wu, Yang Lin, and Jie Xu, "Acoustic microfluidic separation techniques and bioapplications: A review", Micromachines, 2020, Vol.11, no.10, p.921.
[5] Huang, Junjie, Hanxu Chen, Ning Li, and Yuanjin Zhao, "Emerging microfluidic technologies for sperm sorting", Engineered Regeneration, 2023.
[6] Vaughan, Denis A., and Denny Sakkas, "Sperm selection methods in the 21st century", Biology of reproduction, 2019, Vol.101, no.6, pp.1076-1082.
[7] Sidelman, Noam, Moshik Cohen, Anke Kolbe, Zeev Zalevsky, Andreas Herrman, and Shachar Richter, "Rapid particle patterning in surface deposited micro-droplets of low ionic content via low-voltage electrochemistry and electrokinetics", Scientific Reports, 2015, Vol.5, no.1, p.13095.
[8] Lewpiriyawong, Nuttawut, Chun Yang, and Yee Cheong Lam, "Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3‐D conducting PDMS composite electrodes", Electrophoresis, 2010, Vol.31, no.15, pp.2622-2631.
[9] Lebel, Paul, Aakash Basu, Florian C. Oberstrass, Elsa M. Tretter, and Zev Bryant, "Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension", Nature methods, 2014, Vol.11, no.4, pp.456-462.
[10] Fan, Xudong, and Ian M. White, "Optofluidic microsystems for chemical and biological analysis", Nature photonics, 2011, Vol.5, no.10, pp.591-597.
[11] Wang, Kai, Ethan Schonbrun, Paul Steinvurzel, and Kenneth B. Crozier, "Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink", Nature communications, 2011, Vol.2, no.1, p.469.
[12] Kessler, John O., "Hydrodynamic focusing of motile algal cells". Nature, 1985, Vol.313, no.5999, pp.218-220.
[13] Zhang, Peiran, Hunter Bachman, Adem Ozcelik, and Tony Jun Huang, "Acoustic microfluidics", Annual Review of Analytical Chemistry, 2020, Vol.13, pp.17-43.
[14] Agarwal, Ashok, Manesh Kumar Panner Selvam, Saradha Baskaran, Renata Finelli, Kristian Leisegang, Cătălina Barbăroșie, Peter Natesan Pushparaj et al., "A scientometric analysis of research publications on male infertility and assisted reproductive technology", Andrologia, 2021, Vol.53, no.1, p.e13842.
[15] Schultz, Richard M., and Carmen J. Williams, "The science of ART", Science, 2002, Vol.296, no.5576, pp.188-2190.
[16] Fang, Yu, Ruige Wu, Joo Mong Lee, Ling Hou Melinda Chan, and Kok Yen Jerry Chan, "Microfluidic in-vitro fertilization technologies: Transforming the future of human reproduction", TrAC Trends in Analytical Chemistry, 2023, p.116959.
[17] Henkel, Ralf R., and Wolf-Bernhard Schill, "Sperm preparation for ART", Reproductive biology and endocrinology, 2003, Vol.1, no.1, pp.1-22.
[18] Aitken, R. John, and Jane S. Clarkson, "Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques", Journal of andrology, 1988, Vol.9, no.6, pp.367-376.
[19] Centola, Grace M., Rita Herko, Evelyn Andolina, and Stephen Weisensel, "Comparison of sperm separation methods: effect on recovery, motility, motion parameters, and hyperactivation", Fertility and sterility, 1998, Vol.70, no.6, pp.1173-1175.
[20] Jafek, Alex, Haidong Feng, Dallin Broberg, Bruce Gale, Raheel Samuel, Kenneth Aston, and Timothy Jenkins, "Optimization of Dean flow microfluidic chip for sperm preparation for intrauterine insemination", Microfluidics and Nanofluidics, 2020, Vol.24, pp.1-9.
[21] Xiao, Sa, "Sperm motion in viscous environments with applications in microfluidics-based selection", PhD diss., University of Toronto (Canada), 2023.
[22] Nosrati, Reza, Max M. Gong, Maria C. San Gabriel, Armand Zini, and David Sinton, "based sperm DNA integrity analysis", 2016.
[23] Zaferani, Meisam, Soon Hon Cheong, and Alireza Abbaspourrad, "Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system", Proceedings of the National Academy of Sciences, 2018, Vol.115, no.33, pp.8272-8277.
[24] Pérez-Cerezales, Serafín, Ricardo Laguna-Barraza, Alejandro Chacón de Castro, María Jesús Sánchez-Calabuig, Esther Cano-Oliva, Francisco Javier de Castro-Pita, Luis Montoro-Buils, Eva Pericuesta, Raúl Fernández-González, and Alfonso Gutiérrez-Adán, "Sperm selection by thermotaxis improves ICSI outcome in mice", Scientific Reports, 2018, Vol.8, no.1, p.2902.
[25] Paredes Osorio, Bruno Joaquin, "Evaluation of Current Methods of Sperm Processing for In-Vitro Production of Embryos in Horses", PhD diss., University of Guelph, 2023.
[26] Landenberger, Benjamin, Henning Höfemann, Simon Wadle, and Alexander Rohrbach, "Microfluidic sorting of arbitrary cells with dynamic optical tweezers", Lab on a Chip, 2012, Vol.12, no.17, pp.3177-3183.
[27] MacDonald, Michael P., Gabriel C. Spalding, and Kishan Dholakia, "Microfluidic sorting in an optical lattice", Nature, 2003, Vol.426, no.6965, pp.421-424.
[28] Xia, Nan, Tom P. Hunt, Brian T. Mayers, Eben Alsberg, George M. Whitesides, Robert M. Westervelt, and Donald E. Ingber, "Combined microfluidic-micromagnetic separation of living cells in continuous flow", Biomedical microdevices, 2008, Vol.8, pp.299-308.
[29] Gascoyne, Peter RC, and Jody Vykoukal, "Particle separation by dielectrophoresis", Electrophoresis, 2002, Vol.23, no.13, p.1973.
[30] Huh, Dongeun, Wei Gu, Yoko Kamotani, James B. Grotberg, and Shuichi Takayama, "Microfluidics for flow cytometric analysis of cells and particles", Physiological measurement, 2005, Vol.26, no.3, p.R73.
[31] Haake, Albrecht, Adrian Neild, Deok-Ho Kim, Jong-Eun Ihm, Yu Sun, Jürg Dual, and Byeong-Kwon Ju, "Manipulation of cells using an ultrasonic pressure field", Ultrasound in medicine & biology, 2005, Vol.31, no.6, pp.857-864.
[32] Devendran, Citsabehsan, James Carthew, Jessica E. Frith, and Adrian Neild, "Cell adhesion, morphology, and metabolism variation via acoustic exposure within microfluidic cell handling systems", Advanced Science, 2019, Vol.6, no.24, p.1902326.
[33] Friend, James, and Leslie Y. Yeo, "Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics", Reviews of Modern Physics, 2011, Vol.83, no.2, p.647.
[34] Lin, Sz-Chin Steven, Xiaole Mao, and Tony Jun Huang, "Surface acoustic wave (SAW) acoustophoresis: now and beyond", Lab on a Chip, 2012, Vol.12, no.16, p.2766-2770.
[35] Neild, Adrian, Stefano Oberti, and Jürg Dual, "Design, modeling and characterization of microfluidic devices for ultrasonic manipulation", Sensors and Actuators B: Chemical, 2007, Vol.121, no.2, pp.452-461.
[36] Zhang, Zhuoran, Jun Liu, Jim Meriano, Changhai Ru, Shaorong Xie, Jun Luo, and Yu Sun, "Human sperm rheotaxis: a passive physical process", Scientific reports, 2016, Vol.6, no.1, p.23553.
[37] Kantsler, Vasily, Jörn Dunkel, Martyn Blayney, and Raymond E. Goldstein, "Rheotaxis facilitates upstream navigation of mammalian sperm cells", Elife, 2014, Vol.3, p.e02403.
[38] Miki, Kiyoshi, and David E. Clapham, "Rheotaxis guides mammalian sperm", Current Biology, 2013, Vol.23, no.6, pp.443-452.
[39] Marcos, Henry C. Fu, Thomas R. Powers, and Roman Stocker, "Bacterial rheotaxis", Proceedings of the National Academy of Sciences, 2012, Vol.109, no.13, pp.4780-4785.
[40] Bukatin, Anton, Igor Kukhtevich, Norbert Stoop, Jörn Dunkel, and Vasily Kantsler, "Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells", Proceedings of the National Academy of Sciences, 2015, Vol.112, no.52, pp.15904-15909.
[41] Hahn, Philipp, Ivo Leibacher, Thierry Baasch, and Jurg Dual, "Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles", Lab on a Chip, 2015, Vol.15, no.22, pp.4302-4313.
[42] Shi, Jinjie, Hua Huang, Zak Stratton, Yiping Huang, and Tony Jun Huang, "Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)", Lab on a Chip, 2009, Vol.9, no.23, pp.3354-3359.
[43] Zhang, Zhuoran, Jun Liu, Jim Meriano, Changhai Ru, Shaorong Xie, Jun Luo, and Yu Sun, "Human sperm rheotaxis: a passive physical process", Scientific reports, 2016, Vol.6, no.1, p.23553.
[44] King, Louis Vessot, "On the acoustic radiation pressure on spheres", Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1934, Vol.147, no.861, pp.212-240.
[45] Tan, Ming K., Ricky Tjeung, Hannah Ervin, Leslie Y. Yeo, and James Friend, "Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves", Applied Physics Letters, 2009, Vol.95, no.13.
[46] Doinikov, Alexander A., "Theory of acoustic radiation pressure for actual fluids", Physical Review E, 1996, Vol.54, no.6, p.6297.
[47] Bruus, Henrik, "Acoustofluidics 7: The acoustic radiation force on small particles", Lab on a Chip, 2012, Vol.12, no.6, pp.1014-1021.
[48] Woodside, Steven M., Bruce D. Bowen, and James M. Piret, "Measurement of ultrasonic forces for particle–liquid separations", AIChE journal, 1997, Vol.43, no.7, pp.1727-1736.
[49] Saeidi, Davood, Mohsen Saghafian, Shaghayegh Haghjooy Javanmard, and Martin Wiklund, "A quantitative study of the secondary acoustic radiation force on biological cells during acoustophoresis", Micromachines, 2020, Vol.11, no.2, p.152.
[50] Clark, Charles P., Vahid Farmehini, Liam Spiers, M. Shane Woolf, Nathan S. Swami, and James P. Landers, "Real time electronic feedback for improved acoustic trapping of micron-scale particles", Micromachines, 2019, Vol.10, no.7, p.489.
[51] Bruus, Henrik, "Acoustofluidics 2: Perturbation theory and ultrasound resonance modes", Lab on a Chip, 2012, Vol.12, no.1, pp.20-28.
[52] Kupriyanov, L. Yu, ed., Semiconductor Sensors in Physico-Chemical Studies: Translated from Russian by V. Yu. Vetrov. Elsevier, 1996.
[53] Xu, Kerui, Charles P. Clark, Brian L. Poe, Jenny A. Lounsbury, Johan Nilsson, Thomas Laurell, and James P. Landers, "Isolation of a low number of sperm cells from female DNA in a glass–PDMS–glass microchip via bead-assisted acoustic differential extraction", Analytical chemistry, 2019, Vol.91, no.3, pp.2186-2191.
[54] Newton, Joseph M., Desmond Schofield, Joanna Vlahopoulou, and Yuhong Zhou, "Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss", Biotechnology progress, 2016, Vol.32, no.4, pp.1069-1076.
[55] Dhillon, Gurpreet Singh, Satinder Kaur Brar, Surinder Kaur, and Mausam Verma, "Rheological studies during submerged citric acid fermentation by Aspergillus niger in stirred fermentor using apple pomace ultrafiltration sludge", Food and Bioprocess Technology, 2013, Vol.6, pp.1240-1250.
[56] Shimmons, Brian William, W. Y. Svrcek, and J. E. Zajic, "Cell concentration control by viscosity", Biotechnology and Bioengineering, 1976, Vol.18, no.12, pp.1793-1805.
[57] Atanov, Yu A., and A. I. Berdenikov, "Relation between fluid viscosity and compressibility", Journal of engineering physics, 1982, Vol.43, no.2, pp.878-883.
[58] Elert, Glenn, "The physics hypertextbook", Found July, 1998, 2008.
[59] Doinikov, Alexander A., "Acoustic radiation forces: Classical theory and recent advances", Recent Res. Dev. Acoust 1, 2003 pp.39-67.
[60] Sepehrirahnama, Shahrokh, Fook Siong Chau, and Kian-Meng Lim, "Effects of viscosity and acoustic streaming on the interparticle radiation force between rigid spheres in a standing wave", Physical Review E, 2016, Vol.93, no.2, p.023307.
[61] Novotny, Jakub, Andreas Lenshof, and Thomas Laurell, "Acoustofluidic platforms for particle manipulation", Electrophoresis, 2022, Vol.43, no.7-8, pp.804-818.
[62] Destgeer, Ghulam, Kyung Heon Lee, Jin Ho Jung, Anas Alazzam, and Hyung Jin Sung, "Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW)". Lab on a Chip. 2013, Vol.13, no.21, pp.4210-4216.
[63] Eisenbach, Michael, "Mammalian sperm chemotaxis and its association with capacitation", Developmental genetics, 1999, Vol.25, no.2, pp.87-94.
[64] Rayleigh, Lord, "On waves propagated along the plane surface of an elastic solid", Proceedings of the London mathematical Society, 1885, Vol.1, no.1, pp.4-11.
[65] Augustsson, Per, Jonas T. Karlsen, Hao-Wei Su, Henrik Bruus, and Joel Voldman, "Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping", Nature communications, 2016, Vol.7, no.1, p.11556.
[66] Gai, Junyang, Citsabehsan Devendran, Adrian Neild, and Reza Nosrati, "Surface acoustic wave-driven pumpless flow for sperm rheotaxis analysis", Lab on a Chip, 2022, Vol.22, no.22, pp.4409-4417.
[67] Gai, Junyang, Esma Dervisevic, Citsabehsan Devendran, Victor J. Cadarso, Moira K. O'Bryan, Reza Nosrati, and Adrian Neild, "High‐Frequency Ultrasound Boosts Bull and Human Sperm Motility", Advanced Science, 2022, Vol.9, no.11, p.2104362.