توسعه ی روشی برای کاهش مرتبه ی مدل کوپل اکوستیک سازه ی خودرو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه خودرو، دانشکده مهندسی مکانیک،دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 خودرو،مکانیک ،دانشگاه خواجه نصیرالدین طوسی،تهران،ایران

3 خودرو،مکانیک،خواجه نصیرالدین طوسی،تهران،ایران

چکیده

در خودرو منابع نوفه زیادی وجود دارد، نوفه‌های انتقالی از سازه که از اجزا منتقل می­شوند و نوفه‌های انتقالی از هوا که در محیط پخش می‌شوند. منابع نوفه شامل زنجیره انتقال قدرت، نوفه‌های ناشی از تایر، نوفه آیرودینامیک و ... هستند. صدای داخل کابین اتومبیل یکی از مهم‌ترین عوامل در راحتی سرنشین در خودرو است. ازاین‌رو داشتن مدل دقیق جهت کنترل و تحلیل ارتعاشی دقیق­تر سیستم از اهمیت به‌سزایی برخوردار است .شبیه­سازی و تحلیل مدل کوپل شده­ی سازه و محفظه آکوستیکی خودرو با دقت مناسب بسیار پیچیده است، زیرا یک مدل المان محدود نزدیک به واقعیت شامل درجات آزادی زیادی است. ازاین‌رو روش‌های کاهش مرتبه جهت ساده­سازی مدل اصلی با درجات آزادی بالا به یک مدل ساده­تر با درجات آزادی پایین و استفاده از مدل کاهش یافته در تحلیل­ها و طراحی کنترل‌کننده موجب صرفه‌جویی در زمان انجام محاسبات و هزینه­ها می­شود. روش­های متعددی به‌منظور کاهش مرتبه سیستم‌ها وجود دارد. کاهش مرتبه سیستم با دیدگاه روش­هایی براساس تصویر کردن داده­ها و روش­هایی برپایه یافتن انرژی معادل سیستم اصلی طبقه‌بندی می‌شوند. در این پژوهش دو روش کاهش مرتبه مورد بررسی قرار گرفته است، روش اول روش زیرفضای کرایلف که براساس تصویرکردن داده­ها است، روش دوم روش کوپلینگ مودال، که براساس استخراج شکل مودهای مدل سازه و محفظه آکوستیکی به‌صورت مجزا و کوپل کردن آنها است.
در نهایت مدل کوپل کاهش‌یافته شبیه­سازی شده و پارامترهای فشار صوت و جابه‌جایی سازه نیز در این مدل­ها در طیف فرکانسی مختلف بررسی شده است.


 


 

 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Developing a method for reducing the vibroacoustic model of vehicles

نویسندگان [English]

  • Mohammadreza Rahiminejad parvin 1
  • shahram azadi 2
  • golsa ghanati 3
1 Automotive Department.Mechanical Engineering Faculty.Khaje nasir toosi university of technology.tehran.iran
2 Automotive.mechanical engineering.khaje nasir toosi university of technology.tehran.iran
3 automotive. mechanical engineering.khaje nasir toosi university of technology.tehran.iran
چکیده [English]

The cabin of a road vehicle contains multiple noise sources, which can be airborne or structure-borne. These sources include the transmission, engine, tire and road contact noise, aerodynamics noise, and more. The noise in the cabin can significantly affect passenger comfort. Therefore, it is crucial to have an accurate vibroacoustic model for analyzing and controlling vibrations. However, creating a simulation that closely reflects reality using a finite element model is highly complex. This complexity stems from the large number of degrees of freedom in the model, which requires significant computational resources for simulation. To overcome these challenges, various model order reduction (MOR) techniques for linear or nonlinear models have been developed. MOR has two approaches: projection data-based and equivalent model energy-based. In this paper, we utilize two MOR methods to simulate a reduced coupled model. The first method is based on the Krylov subspace method, which uses projection bases to reduce the large linear model. The second method is the modal coupling method, which uses the mode shape of the model to create a reduced model. Finally, we compare the pressure and displacement of the reduced model to the model at different frequency spectra.

کلیدواژه‌ها [English]

  • Model order reduction
  • Coupled Vibro acoustic model
  • Modal Coupling
  • Arnoldi Algorithm
[1] Gaul, Lothar, and Martin Fischer, "Fast multipole boundary element method for the simulation of acoustic-structure interaction", Fluid Structure Interaction and Moving Boundary Problems IV 92, 2007, pp.313-319.
[2] Zienkiewicz, Olek C., Robert L. Taylor, and Jian Z. Zhu, “The finite element method: its basis and fundamentals”, Elsevier, 2005.
[3] Antoulas, A. C., "Approximation of large-scale dynamical systems: An overview", IFAC Proceedings, 2004, Vol.37, no.11, vol19-28.
[4] Howard, Carl Q., Colin H. Hansen, and Anthony Zander, "Vibro-acoustic noise control treatments for payload bays of launch vehicles: discrete to fuzzy solutions", Applied Acoustics, 2005, Vol.66, no.11, pp.1235-1261.
[5] van de Walle, Axel, Frank Naets, Elke Deckers, and Wim Desmet, "Stability‐preserving model order reduction for time‐domain simulation of vibro‐acoustic FE models", International Journal for Numerical Methods in Engineering, 2017, Vol.109, no.6, pp.889-912.
[6] van Ophem, Sjoerd, Onur Atak, Elke Deckers, and Wim Desmet, "Stable model order reduction for time-domain exterior vibro-acoustic finite element simulations", Computer Methods in Applied Mechanics and Engineering, 2017, Vol.325, pp.240-264.
[7] Glover, Keith, "All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞-error bounds", International journal of control, 1984, Vol.39, no.6, pp.1115-1193.
[8] Moore, Bruce, "Principal component analysis in linear systems: Controllability, observability, and model reduction", IEEE transactions on automatic control, 1981, Vol.26, no.1, pp.17-32.
[9] Everstine, G. C., "Finite element formulatons of structural acoustics problems", Computers & Structures, 1997, Vol.65, no.3, pp.307-321.
[10] Morand, Henri J-P., and Roger Ohayon. "Fluid structure interaction: applied numerical methods", (No Title), 1995.
[11] Fahy, Frank J., “Sound and structural vibration: radiation, transmission and response”, Elsevier, 2007.
[12] Arnoldi, Walter Edwin, "The principle of minimized iterations in the solution of the matrix eigenvalue problem", Quarterly of applied mathematics, 1951, Vol.9, no.1, pp.17-29.
[13] Bai, Zhaojun, "Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems", Applied numerical mathematics, 2002, Vol.43, no.1-2, pp.9-44.
[14] Ghanati, Golsa, and Shahram Azadi, "Active control of vehicle’s interior sound field with considering acoustic structural coupling", Modares Mechanical Engineering, 2018, Vol.18, no.7, pp.177-186.