تحلیل ارتعاشات آزاد و اجباری در یک تیر ویسکوالاستیک میکرو، مدل شده با استفاده از مدل ویسکوالاستیک مرتبه کسری کلوین- وویت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای دانشکده مهندسی مکانیک دانشگاه صنعتی امیرکبیر

2 استادیار، دانشکده مهندسی مکانیک دانشگاه صنعتی امیرکبیر

3 استاد، دانشکده مهندسی مکانیک دانشگاه صنعتی امیرکبیر

4 دانشکده ریاضی و علوم کامپیوتر گروه آموزشی ریاضی کاربردی

چکیده

در سال­های اخیر با رشد حسابان کسری به تدریج کاربردهای ریاضیات مرتبه کسری در علوم مهندسی در حال پیدایش هستند. یکی از کاربردهایی که در سال­های اخیر توجه محققان را به خود جلب کرده است مدل­سازی مواد ویسکوالاستیک با استفاده از حسابان کسری است. در این پژوهش یک تیر میکرو که با استفاده از مدل ویسکوالاستیک کسری کلوین- وویت[i] مدل­سازی شده، بررسی می­گردد. تیر مورد نظر در این پژوهش با درنظر گرفتن کرنش­های خطی، تئوری تنش کوپل اصلاح شده (MCST[ii])، مدل ویسکوالاستیک مرتبه کسری کلوین- وویت مدل­­سازی می­شود و با استفاده از اصل هامیلتون[iii]، معادله حرکت به صورت یک معادله­ مرتبه کسری با مشتقات جزئی حاصل می­شود. معادله به‌دست آمده با استفاده از ترکیب المان محدود و تفاضل محدود حل می­­شود. معادلات در حوزه زمان با استفاده از تفاضل محدود و در حوزه مکان با استفاده از المان محدود و گالرکین گسسته‌سازی می­شوند. شبیه­سازی­های انجام شده نشان می­دهد که مشتق مرتبه کسری تأثیر فراوانی در دامنه و پاسخ ارتعاشات آزاد و اجباری تیر مورد نظر دارد و باعث افزایش یا کاهش میرایی می­شود. علاوه‌بر این اثرات طول تیر و ضریب میرایی ویسکوالاستیک نیز بررسی شده­اند. نتایج نشان می‌د­هند پدیده تشدید اثرات مشتق مرتبه کسری را نیز به شدت تحت تأثیر قرار می­دهند. نتایچ این مقاله می­تواند برای بهبود مدل­سازی مواد ویسکوالاستیک به‌کار گرفته شود.



[i]. Kelvin Voigt fractional viscoelastic model


[ii]. Modified Couple Stress Theory


[iii]. Hamilton’s principle

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of free and forced vibrations of a viscoelastic micro-beam, using Kelvin-Voigt fractional viscoelastic model

نویسندگان [English]

  • Ehsan Loghman 1
  • Ali Kamali 2
  • Firooz Bakhtiari-Nejad 3
  • Mostafa Abbaszadeh 4
1 PhD student of AmirKabir University of Tech.
2 Department of Mechanical Engineering, Amirkabir University of Technology
3 Department of Mechanical Engineering, AmirKabir University of Technology
4 دانشکده ریاضی و علوم کامپیوتر گروه آموزشی ریاضی کاربردی
چکیده [English]

In recent years, with the growing of fractional calculus, applications of fractional calculus in engineering sciences have been emerged. One of the applications that attracted many researchers in recent years is modelling of viscoelastic materials by using the fractional calculus. In this paper, an Euler-Bernoulli micro beam that has been modeled by fractional Kelvin-Voigt, is investigated. The beam is modeled based on linear strains, Modified Couple Stress theory (MCST) and Kelvin-Voigt fractional viscoelastic model. By the using of Hamilton principle partial fractional differential equations are derived. Equations of motions are solved by the using of Finite Element Method and Finite Difference Method. Time domain is discretized based on Finite Difference Method and space domain is discretized by utilizing the Finite Element Method. Simulations show that, fractional derivative has large effect on amplitude and response of free and forced vibration of beam and can increase or decrease the damping of the beam. Moreover, effects of beam length and viscoelastic parameter have been shown. Results of this paper can be used for improving viscoelastic model of materials.

کلیدواژه‌ها [English]

  • Fractional calculus
  • micro beam
  • Fractional viscoelastic model
  • Finite difference method
[1] Di Lorenzo, S., Pinnola, F.P. and Pirrotta, A., “On the dynamics of fractional visco-elastic beams”,  In ASME International Mechanical Engineering Congress and Exposition, 2012, Vol. 45202, pp. 1273-1281, American Society of Mechanical Engineers.
[2]        Cajić, M., Karličić, D. and Lazarević, M., “Damped vibration of a nonlocal nanobeam resting on viscoelastic foundation: fractional derivative model with two retardation times and fractional parameters”, Meccanica, 2017, Vol.52, no.1-2, pp.363-382.
[3]        Srivastava, H.M., Kumar, D. and Singh, J., “An efficient analytical technique for fractional model of vibration equation”, Applied Mathematical Modelling, 2017, Vol.45, pp.192-204.
[4] Amabili, Marco, "Nonlinear damping in large-amplitude vibrations: modelling and experiments", Nonlinear Dynamics, 2018, Vol.93, no.1, pp.5-18.
[5] Bahraini, Seyed Masoud Sotoodeh, Mohammad Eghtesad, Mehrdad Farid, and Esmaeal Ghavanloo, "Large deflection of viscoelastic beams using fractional derivative model", Journal of Mechanical Science and Technology, 2013, Vol.27, no.4, pp.1063-1070.
[6] Tang, Ye, Yaxin Zhen, and Bo Fang, "Nonlinear vibration analysis of a fractional dynamic model for the viscoelastic pipe conveying fluid", Applied Mathematical Modelling, 2018, Vol.56, pp.123-136.
[7] Permoon, M. R., H. Haddadpour, and M. Javadi, "Nonlinear vibration of fractional viscoelastic plate: primary, subharmonic, and superharmonic response", International Journal of Non-Linear Mechanics, 2018, Vol.99, pp.154-164.
[8] Lewandowski, Roman, and Przemysław Wielentejczyk, "Nonlinear vibration of viscoelastic beams described using fractional order derivatives", Journal of Sound and Vibration, 2017, Vol.399, pp.228-243.
[9] Colinas-Armijo, N., S. Cutrona, M. Di Paola, and A. Pirrotta, "Fractional viscoelastic beam under torsion", Communications in Nonlinear Science and Numerical Simulation, 2017, Vol.48, pp.278-287.
[10] Lewandowski, Roman, and ZdzisŁaw Pawlak, "Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractionalderivatives", Journal of sound and Vibration, 2011, Vol.330, no.5, pp.923-936.
[11] Ansari, R., M. Faraji Oskouie, and H. Rouhi, "Studying linear and nonlinear vibrations of fractional viscoelastic Timoshenko micro-/nano-beams using the strain gradient theory", Nonlinear Dynamics, 2017, Vol.87, no.1, pp.695-711.
[12] Ansari, R., M. Faraji Oskouie, F. Sadeghi, and M. Bazdid-Vahdati, "Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory", Physica E: Low-Dimensional Systems and Nanostructures, 2015, Vol.74, pp.318-327.
[13] Shitikova, Marina V., Yury A. Rossikhin, and Vladimir Kandu, "Interaction of internal and external resonances during force driven vibrations of a nonlinear thin plate embedded into a fractional derivative medium", Procedia engineering, 2017, Vol.199, pp.832-837.
[14] Hosseinkhani, Ali, and Davood Younesian, "Vibro-acoustic analysis of the railway tracks with fractional railpads and nonlinear ballast", International Journal of Structural Stability and Dynamics, 2017, Vol.17, no.09, p.1750105.
[15] Litewka, Przemysław, and Roman Lewandowski, "Steady-state non-linear vibrations of plates using Zener material model with fractional derivative", Computational Mechanics, 2017, Vol.60, no.2, pp.333-354.
[16] Rossikhin, Yury A., Marina V. Shitikova, and Basem Ajarmah, "Numerical analysis of non-linear vibrations of a fractionally damped cylindrical shell under the conditions of combinational internal resonance", In MATEC Web of Conferences, 2018, Vol.148, p.03006., EDP Sciences.
[17] Oskouie, M. Faraji, R. Ansari, and F. Sadeghi, "Nonlinear vibration analysis of fractional viscoelastic Euler—Bernoulli nanobeams based on the surface stress theory", Acta Mechanica Solida Sinica, 2017, Vol.30, no.4, pp.416-424.
[18] Li, Lei, and Qi-chang Zhang, "Nonlinear dynamic analysis of electrically actuated viscoelastic bistable microbeam system", Nonlinear Dynamics, 2017, Vol.87, no.1, pp.587-604.
[19] Lougou, Komla Gaboutou, Hakim Boudaoud, El Mostafa Daya, and Lahcen Azrar, "Vibration modeling of large repetitive sandwich structures with viscoelastic core", Mechanics of Advanced Materials and Structures, 2016, Vol.23, no.4, pp.458-466.
[20] Javadi, M., M. A. Noorian, and Saied Irani, "Primary and secondary resonances in pipes conveying fluid with the fractional viscoelastic model", Meccanica, 2019, Vol.54, no.14, pp.2081-2098.
[21] Lewandowski, Roman, and Marcin Baum, "Dynamic characteristics of multilayered beams with viscoelastic layers described by the fractional Zener model",  Archive of Applied Mechanics, 2015, Vol.85, no.12, pp.1793-1814.
[22] He, X. Q., M. Rafiee, S. Mareishi, and K. M. Liew, "Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams", Composite Structures, 2015, Vol.131, pp.1111-1123.
[23] Li, Changpin, and Fanhai Zeng, “Numerical methods for fractional calculus”, CRC Press, 2015, Vol.24.
[24] Farokhi, Hamed, and Mergen H. Ghayesh, "Size-dependent parametric dynamics of imperfect microbeams", International Journal of Engineering Science, 2016, Vol.99, pp.39-55.