بررسی کارایی روش هیبرید کنترل فعال و غیرفعال در کاهش نوفه جیغ چرخ قطار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی راه آهن، دانشگاه صنعتی کرمانشاه

2 دانشگاه علم و صنعت ایران

چکیده

جیغ چرخ[i] قطار، یکی از آزاردهنده‌ترین نوفه‌های راه‌آهن است که هنگام عبور قطار از قوس‌های با شعاع کم ایجاد می‌شود. تا به امروز روش‌های مختلفی برای کاهش یا حذف این نوفه ارائه شده است، که تمامی آنها با محدودیت‌هایی روبه‌رو بوده‌اند. در این مقاله با ترکیب دو روش کنترل دیترینگ[ii] به‌وسیله عملگرهای پیزوالکتریک چندلایه میله‌ای[iii] روی ریل و افزایش میرایی چرخ به‌وسیله چسباندن وصله پیزوالکتریک متصل به مدار شانت[iv]، راهکاری هیبرید کنترل فعال و غیرفعال برای حذف نوفه جیغ چرخ در یک بازه فرکانسی گسترده ارائه شده است. برای بررسی عملکرد راهکار پیشنهادی، یک مدل جامع و تأیید شده نوفه جیغ چرخ قطار در حوزه زمان شامل دینامیک خط و چرخ و نیروهای غیرخطی تماس به‌کار گرفته شده است. سپس مدل برای اضافه کردن اثر هم‌زمان کنترل دیترینگ به ریل و تغییر دینامیک چرخ به‌روزرسانی شده است. مدار شانت درنظر گرفته شده از نوع رزونانسی شامل یک مقاومت و سلف است، که امکان افزایش میرایی در یک فرکانس خاص را می‌دهد. عملگرهای متصل به چرخ به دو گروه تقسیم شده‌اند و مدارهای شانت هر گروه برای ایجاد میرایی در فرکانس‌های مورد نظر طراحی شده‌اند. براساس نتایج به‌دست آمده راهکار پیشنهادی به خوبی توانسته تراز فشار صوت[v] جیغ چرخ را در تمامی فرکانس‌ها کاهش دهد و میانگین تراز فشار صوت کاهش یافته به 15 دسی‌بل می‌رسد.
 
[i]. Wheel Squeal
[ii]. Dithering Control
[iii]. Piezoelectric Stack
[iv]. Shunted Piezoelectric patch
[v]. Sound Pressure Level (SPL)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of hybrid active and passive control method for wheel squeal noise suppression

نویسندگان [English]

  • Seyed Rahim Marjani 1
  • Dawood Younesian 2
1 Department of Railway Engineering, Kermanshah University of Technology
2 Iran University of Science and Technology
چکیده [English]

Wheel squeal noise is one of main annoying noise through railways that it is occurred when train passing tight curves. Different noise reduction methods are applied for this problem, but each one has limitations. In this paper, a hybrid method is proposed that comprises an active dithering control on rail using piezoelectric stack actuators and increasing wheel modal damping by attaching shunted piezoelectric patches on it. An experimentally validated transient wheel squeal noise is used for investigation proposed method. The model includes linear dynamics of railway track and wheel-set and nonlinear contact forces. The dithering control on rail, applying high frequency and low amplitude signal, is designed for wheel squeal noise suppression on low frequencies. The shunt circle is resonant type that can be adjusted on specific frequency and causes maximum damping. The modal damping on two modes is increased by dividing attached piezoelectric patches on two group with dedicated shunt circles. The results show proposed method significantly reduce sound pressure level of wheel squeal noise on all frequency domain.

کلیدواژه‌ها [English]

  • Wheel squeal noise
  • dithering control
  • shunted piezoelectric
  • Passive Control
  • Active Control
[1] Rudd, M. J., "Wheel/rail noise—Part II: Wheel squeal", Journal of Sound and Vibration, 1976, Vol.46, no.3, pp.381-394.
[2] Thompson, D. J., and A. D. Monk-Steel, “A theoretical model for curve squeal”,  Southampton, UK: University of Southampton, Institute of Sound and Vibration Research, 2003.
[3] Ding, Bo, Giacomo Squicciarini, and David Thompson, "Effect of rail dynamics on curve squeal under constant friction conditions", Journal of Sound and Vibration, 2019, Vol.442,183-199.
[4] Lai, Van-Vuong, Olivier Chiello, Jean-François Brunel, and Philippe Dufrenoy, "The critical effect of rail vertical phase response in railway curve squeal generation," International Journal of Mechanical Sciences, 2020, Vol.167, p.105281.
[5] Fourie, Daniël J., P. J. Gräbe, Philippus Stephanus Heyns, and Robert Desmond Fröhling, "Frequency domain model for railway wheel squeal resulting from unsteady longitudinal creepage", Journal of Sound and Vibration, 2019, Vol.445, pp.228-246.
[6] Collette, Christophe, "Importance of the wheel vertical dynamics in the squeal noise mechanism on a scaled test bench", Shock and Vibration, 2012, Vol.19, no.2, pp.141-149.
[7] Heckl, Maria A., and I. D. Abrahams, "Curve squeal of train wheels, part 1: mathematical model for its generation", Journal of Sound and Vibration, 2000, Vol.229, no.3, pp.669-693.
[8] Brunel, Jean-François, Philippe Dufrénoy, M. Naït, Jean-Luc Muñoz, and F. Demilly, "Transient models for curve squeal noise", Journal of sound and vibration, 2006, Vol.293, no.3-5, pp.758-765.
[9] Huang, Z. Y., D. J. Thompson, and C. J. C. Jones, "Squeal prediction for a bogied vehicle in a curve", In Noise and Vibration Mitigation for Rail Transportation Systems, Springer, Berlin, Heidelberg, 2008, pp.313-319.
[10] Glocker, Ch, E. Cataldi-Spinola, and R. I. Leine, "Curve squealing of trains: Measurement, modelling and simulation", Journal of Sound and Vibration, 2009, Vol.324, no.1-2, pp.365-386.
[11] Ding, Bo, Giacomo Squicciarini, David Thompson, and Roberto Corradi, "An assessment of mode-coupling and falling-friction mechanisms in railway curve squeal through a simplified approach", Journal of Sound and Vibration, 2018, Vol.423, pp.126-140.
[12] Meehan, Paul A., "Prediction of wheel squeal noise under mode coupling", Journal of Sound and Vibration, 2020, Vol.465, p.115025.
[13] Thompson, David J., G. Squicciarini, B. Ding, and L. Baeza, "A state-of-the-art review of curve squeal noise: phenomena, mechanisms, modelling and mitigation", Noise and Vibration Mitigation for Rail Transportation Systems, 2018, pp.3-41.
[14] Brunel, Jean-François, Philippe Dufrénoy, Jacques Charley, and F. Demilly, "Analysis of the attenuation of railway squeal noise by preloaded rings inserted in wheels", The Journal of the Acoustical Society of America, 2010, Vol.127, no.3, pp.1300-1306.
[15] Merideno, Inaki, Javier Nieto, Nere Gil-Negrete, Aitor Landaberea, and Jon Iartza, "Constrained layer damper modelling and performance evaluation for eliminating squeal noise in trams", Shock and Vibration, 2014.
[16] Yun, Yang-Soo, and Jae-Chul Kim, "Reducing Curve Squeal Noise Using Composite Materials Based on Experimental Investigation", International Journal of Precision Engineering and Manufacturing, 2021, Vol.22, no.9, pp.1573-1582.
[17] Marjani, Seyed Rahim, and Davood Younesian, "Suppression of train wheel squeal noise by shunted piezoelectric elements", International Journal of Structural Stability and Dynamics, 2017, Vol.17, no.02, pp.1750027.
[18] Marjani, Seyed Rahim, and Davood Younesian, "Performance Analysis of Piezoelectric Actuators in Railway Wheel Squealing Noise Mitigation", Shock and Vibration, 2019.
[19] Garg, Naveen, and Omkar Sharma, "Noise emissions of transit trains at curvature due to track lubrication", 2010.
[20] Curley, D., D. C. Anderson, J. Jiang, and D. Hanson, "Field trials of gauge face lubrication and top-of-rail friction modification for curve noise mitigation", In Noise and Vibration Mitigation for Rail Transportation Systems, 2015, Springer, Berlin, Heidelberg, pp. 449-456.
[21] Meehan, Paul A., and Xiaogang Liu, "Modelling and mitigation of wheel squeal noise under friction modifiers", Journal of Sound and Vibration, 2019, Vol.440, pp.147-160.
[22] Meehan, Paul A., and Xiaogang Liu, "Wheel squeal noise control under water-based friction modifiers based on instantaneous rolling contact mechanics", Wear, 2019, Vol.440, pp.203052.
[23] Kim, Jae Chul, Hee-Min Noh, and Yang Soo Yun, "Local coating of curved rails by using low friction material for squeal noise reduction", Advances in Mechanical Engineering, 2020, Vol.12, no.12, p.1687814020980650.
[24] Marjani, Seyed Rahim, and Davood Younesian, "Application of dithering control for the railway wheel squealing noise mitigation", Smart Structures and Systems, An International Journal, 2019, Vol.23, no.4, pp.347-357.
[25] Squicciarini, G., S. Usberti, D. J. Thompson, Roberto Corradi, and A. Barbera. "Curve squeal in the presence of two wheel/rail contact points." In Noise and Vibration Mitigation for Rail Transportation Systems, 2015, Springer, Berlin, Heidelberg, pp.603-610.
[26] Grassie, S. L., R. W. Gregory, D. Harrison, and K. L. Johnson, "The dynamic response of railway track to high frequency vertical excitation", Journal of Mechanical Engineering Science, 1982, Vol.24, no.2, pp.77-90.
[27] Wu, T. X., and D. J. Thompson, "Analysis of lateral vibration behavior of railway track at high frequencies using a continuously supported multiple beam model", The Journal of the Acoustical Society of America, 1999, Vol.106, no.3, pp.1369-1376.
[28] Younesian, Davood, Mohammad Hosein Aleghafourian, and Ebrahim Esmailzadeh, "Vibration analysis of circular annular plates subjected to peripheral rotating transverse loads", Journal of Vibration and Control, 2015, Vol.21, no.7, pp.1443-1455.
[29] Shakeri, Rezgar, and Davood Younesian, "Broad-band noise mitigation in vibrating annular plates by dynamic absorbers", International Journal of Structural Stability and Dynamics, 2016, Vol.16, no.06, p.1550014.
[30] Teoh, Choe-Yung, and Zaidi MohdRipin, "Dither effect on drum brake squeal", Journal of Vibration and Control, 2017, Vol.23, no.7, pp.1057-1072.
[31] Liang, J. R., and W. H. Liao, "Piezoelectric energy harvesting and dissipation on structural damping", Journal of intelligent material systems and structures, 2009, Vol.20, no.5, pp.515-527.