کنترل همزمان وضعیت و ارتعاشات فضاپیمای انعطاف‏ پذیر با استفاده از الگوریتم ‏های فازی و مود لغزشی مرتبه بالا

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشگاه هوافضا (وزارت علوم، تحقیقات و فناوری)

چکیده

در این مقاله به توسعه کنترل هوشمند وضعیت و ارتعاشات فضاپیمای انعطاف‏پذیر در مانور تک محوره در حضور اغتشاشات خارجی و نامعینی‏ها پرداخته شده است. معادلات حرکت سیستم با لحاظ دینامیک غیر‏خطی و کاملا کوپل صلب-انعطاف‏پذیر با استفاده از اصل همیلتون و روش المان محدود استخراج شده است. ساختار کنترل وضعیت از الگوریتم فازی برای کنترل هم‌زمان مانور و ارتعاشات بهره می‏برد. در این الگوریتم از معیار ارتعاشات بخش‏ها‏ی انعطاف‏پذ‏یر در کنار ورودی‏های خطای وضعیت و زمان استفاده شده است. به‌منظور بررسی و مقایسه عملکرد این کنترلر، از فرم توسعه یافته الگوریتم مرتبه دوم مود لغزشی فراپیچشی-ترمینال غیرتکین و کنترل فیدبک نرخ کرنش به‌طور هم‌زمان استفاده شده است. رویکرد پیشنهادی با بهره‌گیری از مزایای هر الگوریتم در قالب یک روش هیبرید، منجربه افزایش دقت در رهگیری هدف، افزایش سرعت هم‌گرایی، کاهش پدیده چترینگ[i]، کاهش ارتعاشات باقی‏مانده و کاهش اثرات متقابل دینامیک انعطاف‏پذیر بر دینامیک جسم صلب می‌شود. پایداری کلی سامانه با استفاده از نظریه لیاپانوف اثبات شده است. شبیه‏سازی‏های کامپیوتری در قالب یک مطالعه مقایسه‌ای، عملکرد هر دو رویکرد را در کاهش اثرات تقابلی کنترل-سازه در مانور با زاویه بزرگ نمایش می‏دهد.‏‏‏
 
[i]. Chattering


 


 

 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Attitude and Vibration Control of a Flexible Spacecraft using Fuzzy and High-Order Sliding Mode Algorithms

نویسندگان [English]

  • Milad Azimi
  • Morteza Jahan
Aerospace Research Institute (Ministry of science, research and technology)
چکیده [English]

This paper develops an intelligent attitude control and vibration suppression system for flexible spacecraft performing a single-axis maneuver with external disturbances and parameter uncertainties. Fully coupled nonlinear equations of motion are discretized by Hamilton's principle and the finite element method. The attitude control structure utilizes a fuzzy algorithm to control the attitude and vibration of the panel simultaneously. This algorithm uses a vibration criterion for flexible parts, attitude errors and time inputs. In order to evaluate the performance of such an approach, super twisting-non-singular terminal sliding mode (SNTSMC) and strain rate feedback (SRF) were used simultaneously. The proposed SNTSMC/SRF algorithm takes advantage of each as part of a hybrid algorithm that leads to increased targeting accuracy, faster convergence rate, reduced chattering, reduced residual vibrations, and reduced rigid-flexible bodies interactions. The Lyapunov theory demonstrates the system's overall stability. Simulation results as a comparative study demonstrate the effectiveness of both approaches in reducing control-structure interactions during large-angle maneuvers.

کلیدواژه‌ها [English]

  • Flexile spacecraft
  • Fuzzy control
  • Sliding mode
  • Piezoelectric
[1] Zhang, Jianqiao, Xianglong Kong, Chuang Liu, Qing Deng, and Keke Shi, "Agile attitude maneuver with active vibration-suppression for flexible spacecraft", Journal of the Franklin Institute, 2022, Vol.359, no.3, pp.1172-1195.
[2] Azimi, Milad, and Ghasem Sharifi, "A hybrid control scheme for attitude and vibration suppression of a flexible spacecraft using energy-based actuators switching mechanism", Aerospace Science and Technology, 2018, Vol.82, pp.140-148.
[3] Alipour, Milad, Maryam Malekzadeh, and Alireza Ariaei, "Active fractional-order sliding mode control of flexible spacecraft under actuators saturation", Journal of Sound and Vibration, 2022, Vol.535, pp.117110.
[4] Zhu, Jiahao, Jian Zhang, Xiaobin Tang, and Yangjun Pi, "Adaptive boundary control of a flexible-link flexible-joint manipulator under uncertainties and unknown disturbances", Journal of Vibration and Control, 2023, Vol.29, no.1-2, pp.169-184.
[5] Wang, Haoping, Xingyu Zhou, and Yang Tian, "Robust adaptive fault‐tolerant control using RBF‐based neural network for a rigid‐flexible robotic system with unknown control direction", International Journal of Robust and Nonlinear Control, 2022, Vol.32, no.3, pp.1272-1302.
[6] Golestani, Mehdi, Weidong Zhang, Yunxiang Yang, and Nguyen Xuan-Mung, "Disturbance observer-based constrained attitude control for flexible spacecraft", IEEE Transactions on Aerospace and Electronic Systems, 2022.
[7] Zhang, Qingyun, Xinhua Zhao, Liang Liu, and Tengda Dai, "Adaptive sliding mode neural network control and flexible vibration suppression of a flexible spatial parallel robot", Electronics, 2021, Vol.10, no.2, p.212.
[8] Cheng, Xin, Huashan Liu, and Wenke Lu, "Chattering-suppressed sliding mode control for flexible-joint robot manipulators", In Actuators, 2021, Vol.10, no.11, p.288. Multidisciplinary Digital Publishing Institute.
[9] Li S., Yu X., Fridman L., Man Z. and Wang X., Advances in variable structure systems and sliding mode control—theory and applications. Springer, 2017.
[10] Wang, Cong, Hongwei Xia, Yanmin Wang, and Shunqing Ren, "A novel adaptive-gain higher-order sliding mode controller and its parameters tuning", Nonlinear Dynamics, 2022, Vol.107, pp.1049-1062.
[11] Zhang, Yao, Shengjing Tang, and Jie Guo, "Adaptive-gain fast super-twisting sliding mode fault tolerant control for a reusable launch vehicle in reentry phase", ISA transactions, 2017, Vol.71, pp.380-390.
[12] Zheng, Wenchao, and Mou Chen, "Tracking control of manipulator based on high-order disturbance observer", IEEE Access, 2018, Vol.6, pp.26753-26764.
[13] Li, Xiaolei, Guanghui Sun, and Cong Xue, "Fractional-order deployment control of space tethered satellite via adaptive super-twisting sliding mode", Aerospace Science and Technology, 2022, Vol.121, p.107390.
[14] Dong, Hanlin, and Xuebo Yang, "Learning‐based super‐twisting sliding‐mode control for space circumnavigation mission with suboptimal reaching under input constraints", International Journal of Robust and Nonlinear Control, 2022, Vol.32, no.9, pp.5328-5349.
[15] Behnamgol, Vahid, and Ahmad Reza Vali, "Terminal sliding mode control for nonlinear systems with both matched and unmatched uncertainties", Iranian Journal of Electrical & Electronic Engineering, 2015, Vol.11, no.2, p.109.
[16] Truong, Thanh Nguyen, Anh Tuan Vo, and Hee-Jun Kang, "A backstepping global fast terminal sliding mode control for trajectory tracking control of industrial robotic manipulators", IEEE Access, 2021, Vol.9, pp.31921-31931.
[17] Zhang, Jinghui, Guoqiang Zeng, and Yudong Gao, "Spacecraft Electromagnetic Docking Control Using Nonsingular Terminal Sliding Mode", In Advances in Guidance, Navigation and Control: Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020, Tianjin, China, October, Vol.23–25, 2020, pp.3915-3926. Springer Singapore, 2022.
[18] Cruz-Ortiz, David, Isaac Chairez, and Alexander Poznyak, "Non-singular terminal sliding-mode control for a manipulator robot using a barrier Lyapunov function", ISA transactions, 2022, Vol.21, pp.268-283.
[19] Zhao, Zhanshan, Hongru Gu, Jing Zhang, and Gang Ding, "Terminal sliding mode control based on super-twisting algorithm", Journal of Systems Engineering and Electronics, 2017, Vol.28, no.1, pp.145-150.
[20] Haghighi D. A. and Mobayen S., “Design of an adaptive super-twisting decoupled terminal sliding mode control scheme for a class of fourth-order systems”, ISA transactions, 2018, vol.75, pp.216-225.
[21] Xu, Bin, Xia Wang, Fuchun Sun, and Zhongke Shi, "Intelligent control of flexible hypersonic flight dynamics with input dead zone using singular perturbation decomposition", IEEE Transactions on Neural Networks and Learning Systems, 2021.
[22] Dumitrescu, Catalin, Petrica Ciotirnae, and Constantin Vizitiu, "Fuzzy logic for intelligent control system using soft computing applications", Sensors, 2021, Vol.21, no.8, p.2617.
[23] Nagi, Farrukh, Abdul Talip Zulkarnain, and J. Nagi, "Tuning fuzzy Bang–bang relay controller for satellite attitude control system", Aerospace Science and Technology, 2013, Vol.26, no.1, pp.76-86.
[24] Walker, Alex R., Philip T. Putman, and Kelly Cohen, "Solely magnetic genetic/fuzzy-attitude-control algorithm for a CubeSat", Journal of Spacecraft and Rockets, 2015, Vol.52, no.6, pp.1627-1639.
[25] Hong, Sung Kyung, and Yoonsu Nam, "Stable fuzzy control system design with pole-placement constraint: an LMI approach", Computers in Industry, 2003, Vol.51, no.1, pp.1-11.
[26] Zhang, Xihai, Ming Zeng, and Xiao Yu, "Fuzzy control of rigid spacecraft attitude maneuver with decay rate and input constraints", International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2011, Vol.19, no.06, pp.1033-1046.
[27] Mazmanyan, Lilit, and Mohammad A. Ayoubi, "Takagi-sugeno fuzzy model-based attitude control of spacecraft with partially-filled fuel tank", In AIAA/AAS astrodynamics specialist conference, 2014, p.4215.
[28] Sendi, Chokri, and Mohammad A. Ayoubi, "Robust fuzzy tracking control of flexible spacecraft via a T–S fuzzy model", IEEE Transactions on Aerospace and Electronic Systems, 2017, Vol.54, no.1, pp.170-179.
[29] Sendi, Chokri, and Mohammad A. Ayoubi, "Robust-optimal fuzzy model-based control of flexible spacecraft with actuator amplitude and rate constraints", In Dynamic Systems and Control Conference, 2015, Vol.57243, p.V001T06A005. American Society of Mechanical Engineers.
[30] Sendi, Chokri, and Mohammad A. Ayoubi, "Robust-optimal fuzzy model-based control of flexible spacecraft with actuator constraint", Journal of Dynamic Systems, Measurement, and Control, 2016, Vol.138, no.9, p.091004.
[31] Qiu, Zhi-cheng, Yang Yang, and Xian-min Zhang, "Reinforcement learning vibration control of a multi-flexible beam coupling system", Aerospace Science and Technology, 2022, Vol.129, p.107801.
[32] Liang, Dong, Yimin Song, Tao Sun, and Xueying Jin, "Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes", Mechanical Systems and Signal Processing, 2018, Vol.103, pp.413-439.
[33] Azimi, Milad, and Samad Moradi. "Robust optimal solution for a smart rigid–flexible system control during multimode operational mission via actuators in combination." Multibody System Dynamics 52 (2021): 313-337.
[34] Azimi, Milad, and Eshagh Farzaneh Joubaneh, "Dynamic modeling and vibration control of a coupled rigid-flexible high-order structural system: A comparative study", Aerospace Science and Technology, 2020, Vol.102, p.105875.
[35] Lin, Chuan-Kai, "Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks", IEEE transactions on fuzzy systems, 2006, Vol.14, no.6, pp.849-859.