طراحی و شبیه سازی میراگر "ام آر" برای خودروهای سبک با استفاده از برهم‌کنش چند فیزیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه امام حسین (ع)

2 دانشگاه امام حسین

چکیده

ارتعاشات می‌تواند اثرات مطلوب و یا نامطلوبی بر روی سیستم‌ها و یا انسان‌ها وارد آورد. ناراحتی سرنشینان خودروها بر اثر حرکت بر روی جاده‌های ناهموار، نمونه‌ای از اثرات نامطلوب ارتعاشات است. برای جلوگیری از این آسیب‌ها، از انواع میراگرها استفاده می‌شود. میراگرهای مگنتورئولوژیکال (ام آر)[i] یکی از فناوری‌های پیشرفته در زمینه سیستم‌های تعلیق است. امروزه پژوهش‌های فراوانی در جهت افزایش نیروی میرایی، کاهش هزینه‌های ساخت و نیز طراحی و شبیه‌سازی یک میراگر با قابلیت سهولت ساخت درحال انجام است که بیانگر ضرورت پژوهش پیش‌رو است. در این مقاله پس از بررسی‌های نظری پیرامون این نوع از میراگرها و استخراج معادلات حاکم بر مدل مکانیکی (توسط مدل پلاستیک بینگهام)، میدان الکترومغناطیسی (توسط معادلات ماکسول و قانون آمپر) و نیز میدان جریان (توسط معادله ناویر- استوکس)، سعی شد تا یک میراگر ام آر دو میله که نمونه بدیعی از این میراگرها است، از طریق برهم‌کنش چندفیزیکی (سیال- جامد- مغناطیس) به‌‌وسیله نرم‌افزار کامسول، طراحی و شبیه‌سازی شود و سپس به تحلیل نتایج پرداخته شود. همچنین نمونه طراحی‌شده، برخلاف نمونه‌های قبلی این میراگرها، نیازی به محفظه جبران‌ساز گازی، ندارد. اطلاعات به‌دست‌آمده از نتایج شبیه‌سازی نشان داد که با توجه به الزامات یک کمک فنر خودرو سبک که به نیروی میرایی بیشتر از 1000 نیوتن نیاز دارد، این میراگر، یک دستگاه نیمه‌فعال مناسب است و می‌تواند حداقل مقدار نیروی میرایی مورد نیاز را، تولید کرده و به‌صورت گسترده در حمل‌ونقل و زمینه‌های دیگر، همچون سیستم تعلیق خودروهای سبک، مورد استفاده قرار گیرد و سبب بهبود راحتی و افزایش کیفیت عملکرد وسیله نقلیه شود.
 
[i]. Magneto-Rheological


 


 

 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and simulation of magnetorheological damper for light vehicles Using Multi- Physics Coupling

نویسندگان [English]

  • Ali Bagheri Fahraji 1
  • Saeed Mahjoob Moghaddas 1
  • mohammad mohsen modarres gheisari 2
1 imam hossein university
2 imam hossein university
چکیده [English]

Vibrations can have favorable or undesirable effects on systems. The discomfort of the vehicles as a result of moving on rough roads is an example of the adverse effects of vibrations. A variety of dampers are used to prevent these damages. MR is one of the advanced technologies in the field of suspension systems. There is a lot of research today to increase the damping force, reduce construction costs, and design and simulate a damper with ease of construction, which indicates the necessity of a progressive research. In this paper, after the theoretical reviews the equations governing the mechanical model (by the Bingham plastic model), the electromagnetic field (by the Maxwell and Amp law) and the flow field (by the Naviers-Stokes equation) Until a double-rod Damper, which is an exquisite example of these dampers, is designed and simulated through the Camsol software through a multiphysics coupling (fluid-solid-magnet) interaction and then analyze the results. Also, the sample designed, unlike previous examples of these dampers, does not require a gas compensatory chamber. The information obtained from the simulation results showed that due to the requirements of a light car aid that requires a damping force of more than 1000 Nm, the damper is a suitable semi -active device and can produce the minimum amount of the required in the required intense force. Transportation and other areas, such as the suspension of light cars, should be used and improve the comfort and increase the quality of the vehicle.

کلیدواژه‌ها [English]

  • Damper
  • magnetorheological
  • simulation
  • numerical solution
[1] Costa, Eduarda, and PJ Costa Branco, "Continuum electromechanics of a magnetorheological damper including the friction force effects between the MR fluid and device walls: analytical modelling and experimental validation", Sensors and Actuators A: Physical, 2009, Vol.155, no.1, pp.82-88.
[2] Rahim, M. S. A., and I. Ismail, "Review of magnetorheological fluids and nanofluids thermal behaviour", In IOP Conference Series: Materials Science and Engineering, Vol.100, no.1, p.012040. IOP Publishing, 2015.
[3] Rahman, Mahmudur, Zhi Chao Ong, Sabariah Julai, Md Meftahul Ferdaus, and Raju Ahamed, "A review of advances in magnetorheological dampers: their design optimization and applications", Journal of Zhejiang University-Science A, 2017, Vol.18, no.12, pp.991-1010.
[4] Oh, Jong-Seok, and Seung-Bok Choi, "Medical applications of magnetorheological fluids—a review", Magnetic Materials and Technologies for Medical Applications, 2022, pp.485-500.
[5] Oyadiji, S. Olutunde, and Paschalis Sarafianos, "Characterisation and comparison of the dynamic properties of conventional and electro-rheological fluid shock absorbers", International journal of vehicle design, 2003, Vol.33, no.1-3, pp.251-278.
[6] Nguyen, Quoc-Hung, Young-Min Han, Seung-Bok Choi, and Norman M. Wereley, "Geometry optimization of MR valves constrained in a specific volume using the finite element method", Smart Materials and Structures, 2007, Vol.16, no.6, p.2242.
[7] Şahin, İsmail, Zekeriya Parlak, and Tahsin Engin, "Investigation of The Effects of Temperature Variations On The Magnetorheological Damper Behaviour", In 15th International Research/Expert Conference,“Trends in the Development of Machinery and Associated Technology”, TMT, 2011, pp.63-66.
[8] Bai, Xian-Xu, Wei Hu, and Norman M. Wereley, "Magnetorheological damper utilizing an inner bypass for ground vehicle suspensions" IEEE Transactions on Magnetics, 2013, Vol.49, no.7, pp.3422-3425.
[9] Zuo, Zhi Hao, Xiaodong Huang, Jian Hua Rong, and Yi Min Xie, "Multi-scale design of composite materials and structures for maximum natural frequencies", Materials & Design, 2013, Vol.51, pp.1023-1034.
[10] Mangal, S., and Ashwani Kumar, "Experimental and numerical studies of magnetorheological (mr) damper", 2014, pp.1-7.
[11] Sarkar, Chiranjit, and Harish Hirani, "Effect of particle size on shear stress of magnetorheological fluids", Smart Science, 2015, Vol.3, no.2, pp.65-73.
[12] Asadi, Ehsan, Roberto Ribeiro, Mir Behrad Khamesee, and Amir Khajepour, "Analysis, prototyping, and experimental characterization of an adaptive hybrid electromagnetic damper for automotive suspension systems", IEEE Transactions on Vehicular Technology, 2016, Vol.66, no.5, pp.3703-3713.
[13] Bahiuddin, I., S. A. Mazlan, I. Shapiai, F. Imaduddin, and Seung-Bok Choi, "Constitutive models of magnetorheological fluids having temperature-dependent prediction parameter", Smart Materials and Structures, 2018, Vol.27, no.9, p.095001.
[14] Elsaady, Wael, S. Olutunde Oyadiji, and Adel Nasser, "A review on multi-physics numerical modelling in different applications of magnetorheological fluids", Journal of Intelligent Material Systems and Structures, 2020, Vol.31, no.16, pp.1855-1897.
[15] Ganesha, A., Suraj Patil, Nitesh Kumar, and Amar Murthy, "Magnetic field enhancement technique in the fluid flow gap of a single coil twin tube Magnetorheological damper using magnetic shields", Journal of Mechanical Engineering and Sciences, 2020, Vol.14, no.2, pp.6679-6689.
[16] Hu, Guoliang, Lifan Wu, Yingjun Deng, Lifan Yu, and Bin Luo, "Damping performance analysis of magnetorheological damper based on multiphysics coupling", In Actuators, 2021, Vol.10, no.8, p. 76. MDPI, 2021.
[17] Marathe, Amey Pramod, S. M. Khot, and J. Nagler, "Development of low-cost optimal magneto-rheological damper for automotive application", Journal of Vibration Engineering & Technologies, 2022, Vol.10, no.5, pp.1831-1850.
[18] GONCALVES, Fernando D., M. Ahmadian, and J. D. Carlson, "Behavior of MR fluids at high velocities and high shear rates", International Journal of Modern Physics B, 2005, Vol.19, no.07n09, pp.1395-1401.
[19] Poynor, James Conner, "Innovative designs for magneto-rheological dampers", PhD diss., Virginia Tech, 2001.
[20] Saini, Radhe Shyam Tak, Hemantha Kumar, and Sujatha Chandramohan, "Semi-active control of a swing phase dynamic model of transfemoral prosthetic device based on inverse dynamic model", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, Vol.42, pp.1-14.
[21] Ferdek, Urszula, and Jan Łuczko, "Modeling and analysis of a twin-tube hydraulic shock absorber", Journal of Theoretical and Applied Mechanics, 2012, Vol.50, no.2, pp.627-638.
[22] Cortés-Ramirez, Jorge A., Leopoldo S. Villarreal-González, and Manuel Martinez-Martinez, "Characterization, modeling and simulation of magnetorheological damper behavior under triangular excitation", In Mechatronics for safety, security and dependability in a new era, Elsevier, 2007, pp.353-358.
[23] Wang, Qiang, Mehdi Ahmadian, and Zhaobo Chen, "A novel double-piston magnetorheological damper for space truss structures vibration suppression", Shock and Vibration, 2014.
[24] Cheng, Ming, Z. B. Chen, and J. W. Xing, "Design, analysis, and experimental evaluation of a magnetorheological damper with meandering magnetic circuit", IEEE Transactions on Magnetics, 2018, Vol.54, no.5, pp.1-10.
[25] Hu, Guoliang, Yi Ru, and Weihua Li, "Design and development of a novel displacement differential self-induced magnetorheological damper", Journal of Intelligent Material Systems and Structures, 2015, Vol.26, no.5, pp.527-540.
[26] Zhang, Jintao, Wanli Song, Zhen Peng, Jinwei Gao, Na Wang, Seung-Bok Choi, and Gi-Woo Kim, "Microstructure simulation and constitutive modelling of magnetorheological fluids based on the hexagonal close-packed structure", Materials, 2020, Vol.13, no.7, p.1674.
[27] Parlak, Zekeriya, Tahsin Engin, and İsmail Çallı, "Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field", Mechatronics, 2012, Vol.22, no.6, pp.890-903.
[28] Wei, Liankang, Hongzhan Lv, Kehang Yang, Weiguang Ma, Junzheng Wang, and Wenjun Zhang, "A comprehensive study on the optimal design of magnetorheological dampers for improved damping capacity and dynamical adjustability", In Actuators, 2021, Vol.10, no.3, p.64. MDPI, 2021.
[29] Case, David, Behzad Taheri, and Edmond Richer, "Multiphysics modeling of magnetorheological dampers", The International Journal of Multiphysics, 2013, Vol.7, no.1, pp.61-76.
[30] Medina, N. Balaguera, M. A. Atuesta, O. A. Nieto, and PA Ospina Henao, "Solution of Navier-Stokes equations for fluids with magnetorheological compensation used in structures with energy dissipaters", In Journal of Physics: Conference Series, 2022, Vol.2159, no.1, p.012007. IOP Publishing, 2022.
[31] Bullough, W. A., D. J. Ellam, A. P. Wong, and R. C. Tozer, "Computational fluid dynamics in the flow of ERF/MRF in control devices and of oil through piezo-hydraulic valves", Computers & structures, 2008, Vol.86, no.3-5, pp.266-280.
[32] Thanikachalam, J., G. S. Jinu, and P. Nagaraj, "Preparation of MR fluid and Modeling of Magneto rheological Fluid Brake (MRB)", In Applied Mechanics and Materials, Trans Tech Publications Ltd, 2014, Vol.592, pp.2254-2260.
[33] Zhang, Jinlong, Shaobo Lu, and Yawen Yu, "Design optimization and experiment of a disc-type MR device considering the centrifugal effect and plug flow region", Smart Materials and Structures, 2019, Vol.28, no.8, p.085025.