مطالعه اثر نوع محلول وعمق‌غوطه‌وری پروب فراصوت بر ضخامت نانو ورقه‌های گرافن تولیدشده در فاز مایع با پروب فراصوت

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک حالت جامد، دانشکده فیزیک، دانشگاه خواجه نصیرالدین طوسی

چکیده

یکی از روش‌های معمول تولید لایه‌های دو بعدی استفاده از روش پوسته‌سازی در فاز مایع به روش فیزیکی استفاده از پروب فراصوت است. در این پژوهش، پوسته‌های گرافن با استفاده از پروب فراصوت در محیط‌های گوناگون تولید شد. برای به‌دست آوردن شرایط بهینه تولید پوسته‌های دوبعدی گرافن از پودرگرافیت به‌روش پوسته‌سازی در فاز مایع تحت تابش امواج فراصوت، شبیه‌سازی توزیع فشار فراصوت درون محلول و محاسبه اختلاف فشار  با استفاده از نرم‌افزار کامسول[i] انجام شد. این شبیه‌سازی برای پروب‌ ‌فراصوت با فرکانس کاری 20 کیلوهرتز برای پروب با قطر 22 میلی‌متر صورت گرفت تا اختلاف فشار صوتی درون محلول با تغییرات عمق غوطه‌وری پروب محاسبه گردد. سپس شرایط که بیشترین اختلاف فشار را نشان می‌دهد در کار تجربی برای بررسی اثرات عمق‌غوطه‌وری تحت تابش فراصوت در تولید مقدار و ضخامت لایه‌های گرافن، مورد مطالعه قرار گرفت. همان‌طورکه از نتایج شبیه‌سازی انتظار می‌رفت، نتایج تجربی نشان داد که که با افزایش اختلاف فشار آکوستیکی درون محلول، میزان تولید گرافن افزایش می‌یابد. نتایج به‌دست آمده با دستگاه‌های آنالیزی طیف‌سنجی فرابنفش-مرئی، میکروسکوپ الکترونی روبشی نشر میدانی، میکروسکوپ عبوری و طیف رامان نشان می‌دهد که با محلول که از ترکیب آب- اتانول با نسبت حاصل از رابطه کانورس-رایت[ii] حاصل شده، تراکم کم‌لایه‌های گرافن با ضخامت کم بیشتر امکان‌پذیر است. همچنین عمق غوطه‌وری پروب بر تولید میزان و تعداد لایه های گرافن نقش به‌سزایی دارد.
 
[i]. COMSOL Software
[ii]. Connors-Wright equation


 


 

 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Studying the effect of type of solution and immersion depth of ultrasonic probe on the thickness of graphene nanosheets produced in liquid phase with ultrasonic probe

نویسندگان [English]

  • Sayed Waliulhaq Mushfiq
  • Reza Afzalzadeh
Solid Physics, Faculty of physics, K.N.Toosi University of technology
چکیده [English]

One of the common methods of producing two-dimensional layers is the use of exfoliation in the liquid phase by the physical method of using an ultrasonic probe. In this research, graphene layers were produced using an ultrasonic probe in different liquid medium. In order to obtain the optimal conditions for the production of two-dimensional graphene from graphite powder by shelling in the liquid phase under ultrasound radiation, the simulation of the distribution of ultrasonic pressure in the solution and the calculation of the pressure difference were performed using COMSOL software. This simulation was done for an ultrasonic probe with a working frequency of 20 kHz for a probe with a diameter of 22 mm in order to calculate the difference in sound pressure inside the solution with changes in the immersion depth of the probe. Then, the condition that shows the greatest pressure difference was studied in the experimental work to investigate the effects of immersion depth under ultrasound radiation in producing the amount and thickness of graphene layers. As expected from the simulation results, the experimental results showed that the amount of graphene production increases with the increase of the acoustic pressure difference in the solution. The results obtained with UV-visibl, FESEM, TEM and Raman spectrum show that with the solution obtained from the combination of water-ethanol, the density of graphene layers with thickness less is more possible. In addition, the immersion depth of the probe plays a significant role in producing the amount and number of graphene layers.

کلیدواژه‌ها [English]

  • few layers graphene
  • type of medium
  • Probe immersion depth
  • simulation
  • Raman spectrum
[1] Afreen, Sadia, Kasturi Muthoosamy, and Sivakumar Manickam, "Sono-nano chemistry: A new era of synthesising polyhydroxylated carbon nanomaterials with hydroxyl groups and their industrial aspects", Ultrasonics Sonochemistry, 2019, Vol.51, pp.451-461.
[2] Pokhrel, Nimesh, Phani Kiran Vabbina, and Nezih Pala, "Sonochemistry: science and engineering", Ultrasonics sonochemistry, 2016, Vol.29, pp.104-128.
[3] Bang, Jin Ho, and Kenneth S. Suslick, "Applications of ultrasound to the synthesis of nanostructured materials", Advanced materials, 2010, Vol.22, no.10, pp.1039-1059.
[4] Reuter, Fabian, Sonja Lauterborn, Robert Mettin, and Werner Lauterborn, "Membrane cleaning with ultrasonically driven bubbles", Ultrasonics Sonochemistry, 2017, Vol.37, pp.542-560.
[5] Chandrapala, Jayani, Christine Oliver, Sandra Kentish, and Muthupandian Ashokkumar, "Ultrasonics in food processing", Ultrasonics sonochemistry, 2012, Vol.19, no.5, pp.975-983.
[6] Mason, Timothy J., "Developments in ultrasound—non-medical", Progress in biophysics and molecular biology, 2007, Vol.93, no.1-3, pp.166-175.
[7] Klíma, Jiri, A. Frias-Ferrer, José González-García, Jiri Ludvík, V. Saez, and Jesus Iniesta, "Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results", Ultrasonics sonochemistry, 2007, Vol.14, no.1, p.19-28.
[8] Kimura, Takahide, Takashi Sakamoto, Jean-Marc Leveque, Hajime Sohmiya, Mitsue Fujita, Shigeyoshi Ikeda, and Takashi Ando, "Standardization of ultrasonic power for sonochemical reaction", Ultrasonics Sonochemistry, 1996, Vol.3, no.3, pp. S157-S161.
[9] Pugin, B., "Qualitative characterization of ultrasound reactors for heterogeneous sonochemistry", Ultrasonics, 1987, Vol.25, no.1, pp.49-55.
[10] Faı̈d, F., F. Contamine, A. M. Wilhelm, and H. Delmas, "Comparison of ultrasound effects in different reactors at 20 kHz", Ultrasonics Sonochemistry, 1998, Vol.5, no.3, pp.119-124.
[11] Lee, Changgu, Xiaoding Wei, Jeffrey W. Kysar, and James Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", science, 2008, Vol.321, no.5887, pp.385-388.
[12] K. S. Novoselov, A. K. Geim, S. V. Morozov, S. V. Dubonos, Y. Zhang, and D. Jiang, "Room-temperature electric field effect and carrier-type inversion in graphene films", ArXiv: cond-mat, 2004, 02-15117.
[13] Balandin, Alexander A., Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau, "Superior thermal conductivity of single-layer graphene", Nano letters, 2008, Vol.8, no.3, pp.902-907.
[14] Eima, A. K., and K. S. Novoselov, "The rise of grapheme", Nature Materials, 2007, Vol.6, no.3, pp.183-191.
[15] Geim, Andre Konstantin, "Graphene: status and prospects", science, 2009, Vol.324, no.5934, pp.1530-1534.
[16] Backes, Claudia, Thomas M. Higgins, Adam Kelly, Conor Boland, Andrew Harvey, Damien Hanlon, and Jonathan N. Coleman, "Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation", Chemistry of materials, 2017, Vol.29, no.1, pp.243-255.
[17] Bonaccorso, Francesco, Antonio Lombardo, Tawfique Hasan, Zhipei Sun, Luigi Colombo, and Andrea C. Ferrari, "Production and processing of graphene and 2d crystals", Materials today, 2012, Vol.15, no.12, pp.564-589.
[18] Forsberg, Viviane, Renyun Zhang, Joakim Bäckström, Christina Dahlström, Britta Andres, Magnus Norgren, Mattias Andersson, Magnus Hummelgård, and Håkan Olin, "Exfoliated MoS2 in water without additives", PloS one, 2016, Vol.11, no.4, p.e0154522.
[19] Jawaid, Ali, Dhriti Nepal, Kyoungweon Park, Michael Jespersen, Anthony Qualley, Peter Mirau, Lawrence F. Drummy, and Richard A. Vaia, "Mechanism for liquid phase exfoliation of MoS2", Chemistry of Materials, 2016, Vol.28, no.1, pp.337-348.
[20] Grayfer, Ekaterina D., Mariia N. Kozlova, and Vladimir E. Fedorov, "Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation", Advances in colloid and interface science, 2017, Vol.245, pp.40-61.
[21] Yuan, Hong, Xiaohong Liu, Limin Ma, Peiwei Gong, Zhigang Yang, Honggang Wang, Jinqing Wang, and Shengrong Yang, "High efficiency shear exfoliation for producing high-quality, few-layered MoS 2 nanosheets in a green ethanol/water system", Rsc Advances, 2016, Vol.6, no.86, pp.82763-82773.
[22] Taghavi, Najme Sadat, and Reza Afzalzadeh, "The effect of sonication parameters on the thickness of the produced MoS2 Nano-flakes", Archives of Acoustics, 2021, pp.31-40.
[23] Cayambe, M., C. Zambrano, T. Tene, M. Guevara, G. Tubon Usca, H. Brito, R. Molina, D. Coello-Fiallos, L. S. Caputi, and C. Vacacela Gomez, "Dispersion of graphene in ethanol by sonication", Materials Today: Proceedings, 2021, Vol.37, pp.4027-4030.
[24] Brotchie, Adam, Franz Grieser, and Muthupandian Ashokkumar, "Effect of power and frequency on bubble-size distributions in acoustic cavitation", Physical review letters, 2009, Vol.102, no.8, pp.084302.
[25] Han, Joong Tark, Jeong In Jang, Haena Kim, Jun Yeon Hwang, Hyung Keun Yoo, Jong Seok Woo, Sua Choi et al., "Extremely efficient liquid exfoliation and dispersion of layered materials by unusual acoustic cavitation", Scientific Reports, 2014, Vol.4, no.1, p.5133.
[26] Shen, Jianfeng, Yongmin He, Jingjie Wu, Caitian Gao, Kunttal Keyshar, Xiang Zhang, Yingchao Yang et al., "Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components", Nano letters, 2015, Vol.15, no.8, pp.5449-5454.
[27] Hernandez, Yenny, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun, Sukanta De, Ignatius T. McGovern et al., "High-yield production of graphene by liquid-phase exfoliation of graphite", Nature nanotechnology, 2008, Vol.3, no.9, pp.563-568.
[28] Klíma, Jiri, A. Frias-Ferrer, José González-García, Jiri Ludvík, V. Saez, and Jesus Iniesta, "Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results", Ultrasonics sonochemistry, 2007, Vol.14, no.1, pp.19-28.
[29] Mushfiq, Sayed Waliulhaq, and Reza Afzalzadeh, "Verification of experimental results with simulation on production of few-layer graphene by liquid-phase exfoliation utilizing sonication", Scientific Reports, 2022, Vol.12, no.1, p.9872.
[30] Durge, Rakhee, R. V. Kshirsagar, and Pankaj Tambe, "Effect of sonication energy on the yield of graphene nanosheets by liquid-phase exfoliation of graphite", Procedia Engineering, 2014, Vol.97, pp.1457-1465.