بررسی اثر فاصله‌های بی‌بعد بر محاسبه شدت صوت در روش شبیه‌سازی گردابه‌های بزرگ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی مکانیک، دانشگاه ملایر

2 کارشناس گروه مهندسی مکانیک، دانشگاه ملایر

چکیده

دقت روش شبیه‌سازی گردابه‌های بزرگ در جریان نزدیک دیواره به فاصله‌های بی‌بعد  و  و  شبکه در لایه مرزی وابسته است. در منابع مختلفی برای این فاصله‌های بی‌بعد پیشنهاداتی داده شده که این مقادیر بسته به فیزیک مسأله و پدیده‌های مورد مطالعه می‌تواند متفاوت باشد. در این مقاله به بررسی اثر این پارامترها پرداخته شده است. بدین منظور دو نوع شبکه با تراکم مختلف مورد استفاده قرار گرفته است. نتایج به‌دست آمده از هر دو شبکه با استفاده از داده‌های تجربی حاصل از تونل باد در باند یک سوم اکتاو اعتبارسنجی شده است. در مطالعه گردابه‌ها‌ با استفاده از خطوط جریان و معیار-کیو مشاهده شد که استفاده از فاصله بی‌بعد بزرگتر بر روی سطح دیواره باعث افزایش مقیاس طولی و قدرت گردابه‌ها شده و در نتیجه قدرت امواج آکوستیکی بیشتر از مقدار واقعی تخمین زده می‌شود. این مسأله در زوایای مختلف مورد بررسی قرار گرفت و مشاهده شد که اختلاف بین دو شبکه در زوایای مختلف تغییر می‌کند. حداکثر اختلاف بین میانگین کلی سطح فشار صوت به‌دست آمده در دو شبکه در حدود یازده دسیبل در زاویه 135 درجه مشاهده گردیده است. با توجه به اینکه فاصله‌های بی‌بعد استفاده شده در هر دو شبکه در محدوده مجاز پیشنهاد شده در مراجع قبلی بودند، می‌توان گفت برای پیش‌بینی صحیح قدرت امواج آکوستیکی به الزامات سخت گیرانه‌تری برای فواصل بی‌بعد نسبت به تحقیقات گذشته نیاز است.


 


 

 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of non-dimensional distances on the calculation of sound intensity in large eddy simulation method

نویسندگان [English]

  • Hamidreza Kaviani 1
  • Ehsan Bashtalam 2
1 Assistant Professor,, Mechanical Engineering Department, Malayer University
2 Mechanical Engineering Department,, Malayer University
چکیده [English]

The accuracy of the large eddy simulation method near the wall depends on the non-dimensional distances y ^ +, x ^ + and z ^ + of the grid in the boundary layer. Study on these non-dimensional distances have been made in various research. But these values ​​can vary depending on the physics of the problem and the phenomena being studied. In this article, the effect of these parameters is investigated on sound estimation. For this purpose two types of grids with different setting have been used. The results obtained from both grids have been validated using experimental data in the one-third octave band . In the study of vortices, using flow lines and Q-criteria, it was observed that the use of larger non-dimensional distances on the wall surface increases the longitudinal scale and strength of vortices and as a result the strength of acoustic waves is estimated to be higher than the actual value. This issue was studied from different directions and it was observed that the differences between the two grids varies at different angles. The maximum difference between the total average sound pressure level obtained by the two meshes is about eleven decibels at an angle of 135 degrees. Considering that the two-dimensional distances used in the both grids were within the suitable ranges suggested in the previous study, it can be said that more stringent requirements for non-dimensional distances are needed to accurately predict the strength of acoustic waves.

کلیدواژه‌ها [English]

  • Sound pressure level
  • Grid density
  • Large eddy simulation
  • Airfoil
  • One-third octave band
[1] م. لشگری، "تحلیل آزردگی صوتی با استفاده از معیارهای کیفیت صدا"، نشریه علمی صوت و ارتعاش، 1395، دوره 5، شماره 10، صص. 107-116.
[2] م. عباسی، م. منظم، و آ. اکبر زاده، "مطالعه اثر صدای توربین‌های بادی بر آزردگی صوتی شاغلان نیروگاه بادی منجیل" نشریه علمی صوت و ارتعاش، دوره 4، 1393، شماره 7، صص.3-13.
[3]        م. شادروان، م. محمودی، ح. نورشاد، "فناوری‌های کاهش میزان سروصدای هواپیما نمونه با موتور توربوفن"، نشریه علمی صوت و ارتعاش، 1398، دوره 8، شماره 15، 1398، صص.29-43.
[4]        ک. شیخی، م. خیری امناب، "بررسی دو نوع چیدمان صداگیر در مقابل فن کانال تهویه هوا به‌کمک شبیه‌سازی نرم‌افزاری"، نشریه علمی صوت و ارتعاش، 1392، دوره 2، شماره 4، صص.43-50.
[5]        م. رومی‌پور، ر. ا. خوشخو، "بررسی نویز اختلاط جریان های سرد و گرم در میکسر کنگره دار یک موتور توربوفن با کنارگذر بالا به روش ویلیام هاوکینگز"، نشریه علمی صوت و ارتعاش، 1400، دوره 10، شماره 20، صفحه 174-188.
[6] Kaviani, Hamid R., and Mohammad Moshfeghi, "Multi-Megawatt Horizontal Axis Wind Turbine Blade Optimization Based on PSO Method.", Aerospace Journal, 2023, 10.2, p.158.‏
[7] Ibren, Mohamed, Amelda Dianne Andan, Waqar Asrar, and Erwin Sulaeman, "A Review on Generation and Mitigation of Airfoil Self-Induced Noise", Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2022, Vol.90, no.1, pp.163-178.
[8] ا. عزت نشان، "محاسبه نویز حول هندسه‌های دوبعدی ایرفویل با استفاده از یک روش تئوری کارآمد"، نشریه علمی صوت و ارتعاش، 1399، دوره 9، شماره 18، صص.115-128.
[9] Brooks, Thomas F., D. Stuart Pope, and Michael A. Marcolini. “Airfoil self-noise and prediction”, 1989, no. L-16528.
[10] Turner, Jacob M., and Jae Wook Kim, "Effect of spanwise domain size on direct numerical simulations of airfoil noise during flow separation and stall", Physics of Fluids, 2020, Vol.32, no.6, p.065103.
[11] Mohamadrezaei, Mohsen, Ali Akbar Dehghan, and Alireza Movahedi, "Comparison of different methods of numerical simulation of flow and sound fields around a square cylinder at various incidence angles", Modares Mechanical Engineering, 2017, Vol.17, no.5, pp.147-158.
[12] Mohammadi, Hossein, and Mahdi Ramezanizadeh, "Aeroacoustic investigation of flow over the diamond, cropped and cranked arrow delta wings using large eddy simulation approach", Modares Mechanical Engineering, 2017, Vol.17, no.5, pp.430-438.
[13] Huttl, T., G. Kahl, F. Kennepohl, and K. Heinig, “Resolution requirements for the numerical computation of tonal noise in compressors and turbines of aeroengines”, MTU AERO ENGINES GMBH MUNCHEN (GERMANY), 2003.
[14] Kaviani, Hamid R., and Amir Nejat, "Investigating the aeroelasticity effects on aeroacoustics and aerodynamics of a MW-class HAWT", Journal of Wind Engineering and Industrial Aerodynamics, 2021, Vol.213, p.104617.
[15] Lighthill, Michael James, "On sound generated aerodynamically I. General theory", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1952, Vol.211, no.1107, pp.564-587.
[16] Kaviani, H. R., and A. Nejat, "Aerodynamic noise prediction of a MW-class HAWT using shear wind profile", Journal of Wind Engineering and Industrial Aerodynamics, 2017, Vol.168, pp.164-176.
[17] Fluent, A. N. S. Y. S., "ANSYS fluent user's guide, release 14.0.", PA: ANSYS Fluent, 2011.
[18] J. F. Williams and D. L. Hawkings, "Sound generation by turbulence and surfaces in arbitrary motion", Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1969, Vol.264, pp.321-342.
[19] Sagaut, Pierre, “Large eddy simulation for incompressible flows: an introduction”, Springer Science & Business Media, 2005.
[20] Wagner, Claus, Thomas Hüttl, and Pierre Sagaut, eds., “Large-eddy simulation for acoustics”, 2007, Vol.20. Cambridge University Press.
[21] Nicoud, Franck, and Frédéric Ducros, "Subgrid-scale stress modelling based on the square of the velocity gradient tensor", Flow, turbulence and Combustion, 1999, Vol.62, no.3, pp.183-200.
[22] Talesh Bahrami, H. R., H. Parhizkar, and S. Ghasemlooy, "Numerical study of the effect of flow suction on the reduction of acoustic noise due to the flow on a three-dimensional cylinder", Modares Mechanical Engineering, 2019, Vol.19, no.5, pp.1049-1059.
[23] Wolf, William Roberto, “Airfoil aeroacoustics, les and acoustic analogy predictions”, 2011, Stanford University.
[24] Menter, Florian R., "Best practice: scale-resolving simulations in ANSYS CFD", ANSYS Germany GmbH 1, 2012.
[25] Choi, Haecheon, and Parviz Moin, "Grid-point requirements for large eddy simulation: Chapman’s estimates revisited", Physics of fluids, 2012, Vol.24, no.1, p.011702.
[26] https://www.pointwise.com/yplus/index.html, visted at 4/19/2022.
[27] https://volupe.se, wall-y-calculator-when-meshing-a-geometry-for-cfd-analysis-this-handy-volupe-calculator-computes-the-height-of-the-first-mesh-cell-off-the-wall-required-to-achieve-a-desired-y-using-flat-plate-boun, visited at 4/19/2022
[28] Solís-Gallego, Irene, Katia María Argüelles Díaz, Jesús Manuel Fernández Oro, and Sandra Velarde-Suárez, "Wall-resolved LES modeling of a wind turbine airfoil at different angles of attack", Journal of Marine Science and Engineering, 2020, Vol.8, no.3, p.212.
[29] Hunt, Julian CR, Alan A. Wray, and Parviz Moin, "Eddies, streams, and convergence zones in turbulent flows", Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 summer program, 1988.
[30] Nejat, Amir, and Hamid Reza Kaviani, "Aerodynamic optimization of a megawatt class horizontal axis wind turbine blade with particle swarm optimization algorithm", Modares Mechanical Engineering, 2017, Vol.16, no.11, pp.1-11.
[31] Li, Puxuan, Steve J. Eckels, Garrett W. Mann, and Ning Zhang, "A method of measuring turbulent flow structures with particle image velocimetry and incorporating into boundary conditions of large eddy simulations", Journal of Fluids Engineering, 2018, Vol.140, no.7, 2018.
[32] Mathey, Fabrice, Davor Cokljat, Jean Pierre Bertoglio, and Emmanuel Sergent, "Assessment of the vortex method for large eddy simulation inlet conditions", Progress in Computational Fluid Dynamics, An International Journal, 2006, Vol.6, no.1-3, pp.58-67.
[33] Kaviani, H., and A. Nejat, "Aeroacoustic and aerodynamic optimization of a MW class HAWT using MOPSO algorithm", Energy, 2017, Vol.140, pp.1198-1215.