برداشت انرژی از سیستم دیسک صلب چرخان با دو تیر طره و پیزوالکتریک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مکانیک- دانشگاه صنعتی خواجه نصیرالدین طوسی- تهران- ایران

2 دانشکده مکانیک-دانشگاه خواجه نصیر الدین طوسی-تهران- ایران

چکیده

در این پژوهش یک سیستم برداشت انرژی که در آن دو تیر طره کوپل شده با لایه های پیزوالکتریک به یک دیسک ‏صلب چرخان متصل هستند معرفی شده است. ‏ابتدا معادلات سیستم با استفاده از روابط الکترومکانیکال لاگرانژ نوشته و سپس به روش حل دقیق و ‏تقریب رزونانسِ حل دقیق، حل شده است. همچنین سیستم برداشت انرژی به کمک نرم افزار شبیه سازی گردیده ‏است. اثر سرعت زاویه ای بر ولتاژ، مقاومت الکتریکی و توان بهینه بررسی و مشاهده شد که با افزایش سرعت زاویه ای، ولتاژ و مقاومت بهینه ابتدا کاهش و سپس افزایش می یابد ولی توان بهینه ابتدا افزایش و سپس کاهش می ‏یابد. کمینه ولتاژ و مقاومت بهینه و بیشینه توان بهینه در سرعت 44 رادیان بر ثانیه بدست می آید. ‏‎ ‎نتایج نشان ‏داد که در این سیستم به منظور تولید توان حداکثر مطلقِ 0/094 وات به مقاومت الکتریکی 1115 اهم نیاز است. ‏همچنین تغییرات توان بر حسب تغییرات ولتاژ و مقاومت الکتریکی بررسی شده است. مقایسه نتایج سه روش ‏استفاده شده نشان داد که مطابقت بالایی میان نتایج حاصل از حل معادلات و شبیه سازی وجود دارد و پاسخ های ‏تقریب رزونانس ساده تر از پاسخ های حل دقیق بوده و خطای ناچیزی دارد.‏

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Energy harvesting from a rotating rigid disk system with two console beams and piezoelectric

نویسندگان [English]

  • esmaeil shirazi 1
  • Ali asghar jafari 2
1 Faculty of Mechanics -K.N. TOOSI UNIVERSITY OF TECHNOLOGY- Tehran-Iran
2 Faculty mechanical engineering- K. N. Toosi University of Technology-Tehran-Iran
چکیده [English]

In this research, a energy harvesting system was introduced in which two console beams coupled with ‎piezoelectric layers are ‎connected to a rotating rigid disk. ‎First, the system equations were written using the ‎electromechanical Lagrange equations and then solved by exact solution and resonance ‎approximation of the exact solution methods. The energy harvesting system was also simulated ‎in software. The effect of angular velocity on resistance, voltage and optimal power was ‎investigated and observed that increasing angular velocity, the optimal resistance and voltage ‎first decrease and then increase, but the optimal power first increases and then decreases. ‎Optimal minimum resistance and voltage and maximum optimal power are obtained at 44 ‎rad/s. The results showed that in this system in order to produce absolute maximum power of ‎‎0.094 W, electrical resistance of 1115 Ω is required. Power were also evaluated versus ‎electrical voltage and resistance. Moreover, comparison of the results of the three methods ‎showed very good agreement between the results of solving equations and simulation and ‎resonance approximation solution responses are simpler than exact solution ones and have ‎negligible error.‎

کلیدواژه‌ها [English]

  • Energy harvesting
  • Piezoelectric
  • Rotating beam
 [1] Paradiso, Joseph A., and Thad Starner, "Energy scavenging for mobile and wireless electronics", IEEE Pervasive computing, 2005, Vol.4, no.1, pp.18-27.
[2] Yang, Zhengbao, Shengxi Zhou, Jean Zu, and Daniel Inman, "High-performance piezoelectric energy harvesters and their applications", Joule, 2018, Vol.2, no.4, pp.642-697.
[3] Erturk, Alper, and Daniel J. Inman, "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart materials and structures, 2009, Vol.18, no.2, p.025009.
[4] Yan, Lutao, Jingfeng Hou, Zhipeng Yang, and Xiangcheng Chu, "Design and experimental characterization of a vibration energy harvesting device for rotational systems", Advances in Mechanical Engineering, 2013, Vol.5, p.263614.
[5] Yan, Lutao, Jingfeng Hou, Zhipeng Yang, and Xiangcheng Chu, "Design and experimental characterization of a vibration energy harvesting device for rotational systems", Advances in Mechanical Engineering, 2013, Vol.5, p.263614.
[6] Guan, Mingjie, and Wei-Hsin Liao, "Design and analysis of a piezoelectric energy harvester for rotational motion system", Energy Conversion and Management, 2016, Vol.111, p.239-244.
[7] Fan, Kangqi, Jianwei Chang, Fengbo Chao, and Witold Pedrycz, "Design and development of a multipurpose piezoelectric energy harvester", Energy Conversion and Management, 2015, Vol.96, pp.430-439.
[8] Tang, Lihua, and Yaowen Yang, "A nonlinear piezoelectric energy harvester with magnetic oscillator", Applied Physics Letters, 2012, Vol.101, no.9, pp.094102.
[9] Machado, Sebastián Pablo, Mariano Febbo, F. Rubio-Marcos, Leandro Alfredo Ramajo, and M. S. Castro, "Evaluation of the performance of a lead-free piezoelectric material for energy harvesting", Smart Materials and Structures, 2015, Vol.24, no.11, p.115011.
[10] Fu, Hailing, and Eric M. Yeatman, "A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion", Energy, 2017, Vol.125, pp.152-161.
[11] Khoo, Shin Yee, Zainab Shakir Radeef, Zhi Chao Ong, Yu-Hsi Huang, Wen Tong Chong, and Zubaidah Ismail, "Structural dynamics effect on voltage generation from dual coupled cantilever based piezoelectric vibration energy harvester system", Measurement, 2017, Vol.107, pp.41-52.
[12] Fu, Hailing, and Eric M. Yeatman, "Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: Theoretical modelling and experimental validation", Mechanical Systems and Signal Processing, 2019, Vol.125, pp.229-244.
[13] Ramírez, Jose Miguel, Claudio David Gatti, Sebastián Pablo Machado, and Mariano Febbo. "Energy harvesting for autonomous thermal sensing using a linked E-shape multi-beam piezoelectric device in a low frequency rotational motion." Mechanical Systems and Signal Processing 133 (2019): 106267.
[14] Cheng, Guangfeng, Chuh Mei, and Raymond YY Lee, "Large amplitude vibration of a cantilever beam with tip mass under random base excitation", Advances in Structural Engineering, 2002, Vol.4, no.4, pp.203-210.
[15] Al-Ansary, M. D., "Flexural vibrations of rotating beams considering rotary inertia", Computers & structures, 1998, Vol.69, no.3, pp.321-328.
[16] Basson, Madelein, Magdaline De Villiers, and NF Janse van Rensburg, "Solvability of a Model for the Vibration of a Beam with a Damping Tip Body", Journal of Applied Mathematics, 2014.
[17] Banks, H. Thomas, and D. J. Inman, "On damping mechanisms in beams", 1991, pp.716-723.
[18] Erturk, Alper, and Daniel J. Inman, "On mechanical modeling of cantilevered piezoelectric vibration energy harvesters", Journal of intelligent material systems and structures, 2008, Vol.19, no.11, pp.1311-1325.
[19] Zhou, Shengxi, Junyi Cao, Daniel J. Inman, Jing Lin, and Dan Li, "Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement", Journal of Sound and Vibration, 2016, Vol.373, pp.223-235.
[20] Erturk, Alper, and Daniel J. Inman, "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters", Journal of vibration and acoustics, 2008, Vol.130, no.4.
[21] Stanton, Samuel C., Alper Erturk, Brian P. Mann, and Daniel J. Inman, "Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification", Journal of Applied Physics, 2010, Vol.108, no.7, p.074903.
[22] Khameneifar, Farbod, Siamak Arzanpour, and Mehrdad Moallem, "A piezoelectric energy harvester for rotary motion applications: Design and experiments", IEEE/ASME Transactions on Mechatronics, 2012, Vol.18, no.5, pp.1527-1534.
[23] Wang, Xu, and Liwei Lin, "Dimensionless optimization of piezoelectric vibration energy harvesters with different interface circuits", Smart materials and structures, 2013, Vol.22, no.8, p.085011.
[24] Wang, Xu, and Liwei Lin, "Dimensionless optimization of piezoelectric vibration energy harvesters with different interface circuits", Smart materials and structures, 2013, Vol.22, no.8 p.085011.
[25] Orban, F., "Damping of materials and members in structures", In Journal of Physics: Conference Series, 2011, Vol. 268, no.1, p.012022. IOP Publishing.
[26] Sjöstrand, Jakob, "Some deviations from linear dynamics due to more accurate damping models", TVSM-5000, 2017.
[27] Priya, Shashank, "Advances in energy harvesting using low profile piezoelectric transducers", Journal of electroceramics, 2007, Vol.19, no.1, pp.167-184.