معرفی و بررسی عملکرد تشدیدگرهای میکرومکانیکی

نوع مقاله : مقاله ترویجی

نویسندگان

1 -

2 هیات علمی -دانشگاه سبستان و بلوچستان

3 هیات علمی-دانشگاه بیرجند

چکیده

امروزه با پیشرفت‌های صورت‌گرفته در زمینة ساخت سیستم‌های میکروالکترومکانیکی، قطعات میکرومکانیکی کاربردهای گسترده‌تری یافته‌اند. از جمله این قطعات پرکاربرد، تشدیدگرهای میکرومکانیکی است. تشدیدگرهای میکرومکانیکی ابعادی کوچک و فرکانس‌های تشدید بالایی دارند. امروزه از این تشدیدگرها در سیستم‌های ارتباطی بی‌سیم و ناوبری، فیلترها، میکروسکوپ اتمی، ژیروسکوپ‌های ارتعاشی، حسگرهای جرم، فشار، کرنش، نیرو، شتاب‌، دما و زیستی استفاده می‌شود. با توجه به اهمیت و کاربرد گستردة تشدیدگرها، در این مقاله، نخست انواع تشدیدگرها، کاربردها، مزایا، نحوة عملکرد آنها در سیستم‌های ارتعاشی، مواد سازنده‌ و انواع روش‌های تحریک و تشخیص در آنها معرفی پس از آن پارامتر ضریب کیفیت و نحوة محاسبة آن تشریح می‌شود. در ادامه انواع سازوکارهای اتلاف انرژی، مدهای ارتعاشی و پارامتر مقاومت حرکتی در تشدیدگرها توضیح داده می‌شود و در نهایت مشخصات انواع تشدیدگرهای متداول ارائه می‌گردد.

کلیدواژه‌ها

موضوعات


[1] Jha, C. M., “Thermal and mechanical isolation of ovenized MEMS resonator”, PhD Thesis, Stanford University, 2008.
[2] Lin, L., R. T. Howe, A. P. Pisano. “Microelectromechanical filters for signal processing.” Journal of Microelectromechanical Systems, vol. 7, 1998, pp. 286-294,
[3] Nguyen, C. T.-C. “Microelectromechanical devices for wireless communications.” MEMS 98, 11th Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg, Germany, 1998.
[4] Zhong, Q., D. Inniss, K. Kjoller, V. B. Elings. “Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy.” Surface Science, vol. 290, 1993, pp. 688-692.
[5] Buser, R. A., N. F. de Rooij. “Resonant silicon structures.” Sensors and Actuators, vol. 17, 1989, pp. 145-154.
[6] Stemme, G. “Resonant silicon sensors.” Journal of Micromechanics and Microengineering, vol. 1, 1991, pp. 113.
[7] Kleiman, R. N., G. K. Kaminsky, J. D. Reppy, R. Pindak, D. J. Bishop. “Single-crystal silicon high-Q torsional oscillators.” Review of Scientific Instruments, vol. 56, 1985, pp. 2088-2091.
[8] R. T. Howe, R. S. Muller. “Resonant-microbridge vapor sensor.” IEEE Transactions on Electron Devices, vol. 33, 1986, pp. 499-506.
[9] Burg, T. P., A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster, S. R. Manalis. “Vacuum-Packaged Suspended Microchannel Resonant Mass Sensor for Biomolecular Detection.” Journal Microelectromechanical Systems, vol. 15, 2006, pp. 1466-1476.
[10] Parsons, P., A. Glendinning, D. Angelidis. “Resonant sensors for highaccuracy pressure measurement using silicon technology.” presented at NationalAerospace and Electronics Conference, NAECON, Proceedings of the IEEE 1992.
[11] Stemme, E., G. Stemme. “A Balanced Resonant Pressure Sensor.” Sensorsand Actuators A: Physical, 1990, vol. 21, pp. 336-341.
[12] Greenwood, J. C. “Silicon in mechanical sensors.” Journal of Physics E: Scientific Instruments, 1988, pp. 1114-1128.
[13] Roessig, T. A. W. “Integrated MEMS Tuning Fork Oscillators for SensorApplications”, thesis in Mechanical Engineering at University of California, Berkeley, 1998.
[14] Kim, H. C., S. Seok, I. Kim, S.-D. Choi, K. Chun. "Inertial-Grade Out-of- Plane and In-Plane Differential Resonant Silicon Accelerometers (DRXLs).” presented at TRANSDUCERS '05, Solid-State Sensors, Actuators and Microsystems, Seoul, 2005.
[15] Hsu, W.T., J. R. Clark, C. T.-C. Nguyen. “A resonant temperature sensor based on electrical spring softening.” presented at TRANSDUCERS ‘01 / Eurosensors XV, The 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany, 2001.
[16] Khine, L., “Performance Parameters of Micromechanical Resonators”, PhD Thesis, National University of Singapore, 2010.
[17] Basu, J., T. K. Bhattacharyya. "Microelectromechanical Resonators for Radio Frequency Communication Applications.” Microsystem Technologies, vol 17 (10-11), 2011, pp.1557-1580.
[18] Wikipedia, http://en.wikipedia.org (accessed August 30, 2016)
[19] Kaajakari, V., Theory and Analysis of MEMS Resonators.
[20] Gualdino, A., V. Chu, J. P. Conde. “Multi-modal analysis of out-of-plane vibration modes of thin-film circular resonators for mass sensing applications”, Procedia Engineering 47, 2012, pp. 1121-1124.
[21] Wang, X., D. Xiao, Z. Zhou, Z. Chen, X. Wu, S. Li. “Support loss for beam undergoing coupled vibration of bending and torsion in rocking mass resonator.” Sensors and Actuators A 171, 2011, pp. 199-206.
[22] Hao, Z., F. Ayazi. “Support loss in the radial bulk-mode vibrations of center-supported micromechanical disk resonators.” Sensors and Actuators A, vol. 134, 2007, pp. 582-593.
[23] Wu, G., D. Xu, B. Xiong, Y., Wang. “A high Q micromachined single crystal silicon bulk mode resonator with pre-etched cavity.” Microsystem Technologies, 2011.
[24] Abdelmoneum, M. A., M. U. Demirci, C. T. C. Nguyen. “Stemless wine glass mode disk micromechanical resonator”, Proceedings of the 16th IEEE International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan 2003, pp. 698-701.
[25] Lee, J. E.Y., J. Yan, A. A. Seshia. “Anchor Limited Q in Flexural Mode Resonators”, Ultrasonics Symposium, 2008.
[26] Wikipedia, “quality factor”, https://wikipedia.org (accessed August 30, 2016).
[27] Alancastro, N. S. “polycristaline diamond RF MEMS resonator technology and characterization”, PhD Thesis, Stanford University, 2005.
[28] Ren, S., Yuan, W., Qiao D., Deng, J., Sun, X. “A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure.” Sensors, vol. 13, 2013, pp. 17006-17024.
[29] Wang, X., Xiao, D., Zhou Z., Wu, X., Chen, Z., Li, S. “Support Loss and Q Factor Enhancement for a Rocking Mass Microgyroscope.” Sensors, vol. 11, 2011, pp. 9807-9819.
[30] Lee, J. E.Y., A. A. Seshia. “5.4-MHz single-crystal silicon wine glass mode disk resonator with quality factor of 2 million.” Sensors and Actuators A: Physical, vol 156, 2009, pp. 28-35.
[31] Judge, J. A., D. M. Photiadis, J. F. Vignola, B. H. Houston, J. Jarzynski. “Attachment loss of micromechanical and nanomechanical resonators inthe limits of thick and thin support structures.” Journal of Applied Physics, Vol. 101, No. 1, 2007, pp. 1-11.
[32] Czaplewski, D., J. P. Sullivan, T. A. Friedmann, D. W. Carr, B. E. N. Keeler, J .R. Wendt. “Experimental demonstration of a laterally deformable optical nanoelectromechanical system grating transducer.” J. Appl. Phys. 97, 2005.
[33] Carr, D. W. “Nanoelectomechanical Resonators”, Ph.D. thesis, Cornell University, 2000.
[34] Blom, F. R., S. Bowstra, M. Elwenspoek, J. H. J Fluitman. “Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry.” j. Vac. Sci. Technol B 10(1), Jan/Feb 1992.
[35] Yasumura, K. Y., T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, D. Rugar. “Quality factors in micron-and submicron-thick cantilevers.” Journal Microelectromech Sys, vol. 9(1) Mar. 2000, 117.
[36] Demirci, M. U., M. A. Abdelmoneum, C. T.-C. Nguyen. “Mecanically corner-coupled square microresonator array for reduced series motional resistance.” IEEE Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, vol. 2, June 9 12, 2003.
[37] Urey, H., C. Kan, W. O. Davis. “Vibration mode frequency formulae for micromechanical scanners.” Journal of Micro-Mechanics and Microengineering, vol. 15, 2005, pp. 1713–1721.
[38] Lee, J. E-Y., J. Yan, A. A. Seshia. “Low loss HF band SOI wine glass bulk mode capacitive square-plate resonator.” Journal of Micro-Mechanics and Microengineering, vol. 19, 2009, pp. 1-10.
[39] Lee, J. E-Y., J. Yan, A. A. Seshia. “Study of lateral mode SOI-MEMS resonators for reduced anchor loss.” Journal of Micro-Mechanics and Microengineering, vol. 21, 2011, pp. 1-10.
[40] Sutagundar, M., B. G. Sheeparamatti, D. S. Jangamshetti. “Research Issues in MEMS Resonators.” International Journal of Engineering And Science, Vol. 4, Issue 8, August 2014, pp. 29-39.