تخمین زمان واخنش کلاس درس با استفاده از شبکه عصبی کانولوشن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صدا وسیما

2 هیئت علمی دانشگاه صداسیما

چکیده

کلاس درس به عنوان یکی از مهم‌ترین محیط‌های آموزشی نقش عمده ای در یادگیری و پیشرفت تحصیلی دانش‌آموزان دارد. زمان واخنش به عنوان یکی از پارامترهای آکوستیکی در داخل اتاق‌ها، تأثیر بسزایی در کیفیت صدا دارد. عدم کارآیی مناسب فرمول‌های کلاسیک مانند سابین، باعث شد که در این مقاله به بررسی استفاده از روش‌های یادگیری ماشین به عنوان یک روش جایگزین برای پیش‌بینی زمان واخنش محیط پرداخته شود. در این پژوهش ابتدا با استفاده از روش های مبتنی بر آکوستیک هندسی و با استفاده از نرم‌افزار اودئون به جمع آوری مجموعه دادگان مورد نیاز در فرکانس‌های 500 و 2000 هرتز پرداخته می شود. در این مجموعه دادگان از 4 کلاس درس با فضایی مستطیل شکل، همراه با المان هایی مانند میز و صندلی و پنجره و در، استفاده شد. پس از آن به منظور ارائه یک سیستم مبتنی بر یادگیری ماشین از شبکه عصبی کانولوشنی استفاده شده است. این مدل ویژگی‌های محیط را در نظر می گیرد و در نهایت مقادیر زمان واخنش را به عنوان تابعی از فرکانس تولید می کند. در این پژوهش با استفاده از شبکه عصبی کانولوشنی برای فرکانس 500 هرتز به ضریب تعیین 93 درصد و برای فرکانس 2000 هرتز، ضریب تعیین 95 درصد حاصل شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of classroom reverberation time using convolutional neural network

نویسنده [English]

  • Masoume Shafieian 2
2 Faculty of Technology and Engineering-irib university
چکیده [English]

The classroom, as one of the most important educational environments, plays a major role in students' learning. Reverberation time is one of the most important acoustic parameters affecting the sound quality inside the environment. The inefficiency of classical formulas such as Sabin, led to the study of the use of machine learning methods as an alternative method for predicting the reverberation time of the environment. In this research, first, using the methods based on geometric acoustics and using Odeon software, the required data sets are collected at 500 and 2000 Hz frequencies. In this dataset, 4 classrooms with a rectangular space were used, along with elements such as desks, chairs, windows and doors. The convolutional neural network used to provide a machine learning based system. In this study, using a convolutional neural network for a frequency of 500 Hz with a coefficient of determination of 93% and for a frequency of 2000 Hz, a coefficient of determination of 95% was obtained.

کلیدواژه‌ها [English]

  • Classroom Acoustics
  • Convolutional neural network
  • Ray tracing
  • reverberation time
[1] Prodi, Nicola, Chiara Visentin, and Andrea Farnetani, "Intelligibility, listening difficulty and listening efficiency in auralized classrooms", The Journal of the Acoustical Society of America, 2010, Vol.128, no.1, pp.172-181.
[2] Nowoświat, Artur, Marcelina Olechowska, and Jan Ślusarek, "Prediction of reverberation time using the residual minimization method", Applied Acoustics, 2016, Vol.106, Vol.42-50.
[3] Hargreaves, J. A., "Synergies between the high-frequency Boundary Element Method and Geometric Acoustics", In Proceedings of e-Forum Acusticum, 2020, pp.545-547, HAL, 2020.
[4] Nowoświat, Artur, and Marcelina Olechowska, "Estimation of reverberation time in classrooms using the residual minimization method", Archives of Acoustics, 2017.
[5] Perez, Ricardo Falcon, Georg Götz, and Ville Pulkki, "Machine-learning-based estimation of reverberation time using room geometry for room effect rendering", In Proceedings of the 23rd International Congress on Acoustics: integrating 4th EAA Euroregio, 2019, Vol.9, p.13.
[6] Yu, Wangyang, and W. Bastiaan Kleijn, "Room Geometry Estimation from Room Impulse Responses using Convolutional Neural Networks", arXiv preprint arXiv: 1904.00869, 2019.
[7] Habets, Emanuel AP., "Room impulse response generator", Technische Universiteit Eindhoven, Tech. Rep, 2006, Vol.2, no.2.4 p.1.
[8] Aliabadi, Mohsen, Rostam Golmohammadi, Abdolreza Ohadi, Muharram Mansoorizadeh, Hassan Khotanlou, and Mohammad Saber Sarrafzadeh, "Development of an empirical acoustic model for predicting reverberation time in typical industrial workrooms using artificial neural networks", Acta Acustica united with Acustica, 2014, Vol.100, no.6, pp.1090-1097.
[9] Aloysius, Neena, and M. Geetha, "A review on deep convolutional neural networks", In 2017 International Conference on Communication and Signal Processing (ICCSP), pp.0588-0592. IEEE, 2017.
[10] Bhangale, Kishor Barasu, and K. Mohanaprasad, "A review on speech processing using machine learning paradigm", International Journal of Speech Technology, 2021, Vol.24, no.2, pp.367-388.
[11] Khezri, Seyed Mostafa, and Pedram Jafari Shalkouhi, "The Schroeder Frequency of Furnished and Unfurnished Spaces", Romanian Journal of Acoustics and Vibration, 2012, Vol.9, no.2, p.113.