پایش وضعیت چدن شکل پذیر با آنتروپی انتشار صوت حین بارگذاری کششی: گزارش پارامتر انرژی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک/دانشگاه سمنان

2 دانشکده مهندسی مکانیک و انرژی/دانشگاه شهید بهشتی

چکیده

در این پژوهش، چدن شکل پذیر (EN-GJS700-2) به منظور شناسایی شروع ترک و شکست مورد ارزیابی قرار گرفت. آزمون کشش تک محوری یکنواخت بر روی نمونه های استخراج شده از وب میل لنگ اتومبیل، تحت شرایط جابه جایی کنترل براساس استاندارد Iso-6892 انجام گردید. شناسایی شروع ترک و شکست با روش مبتنی بر آنتروپی اطلاعات انتشار صوت انجام گردید. نتایج این پژوهش نشان داد شناسایی شروع ترک در روش مبتنی بر پارامترهای انتشار صوت، با عدم قطعیت هایی همراه است حال آنکه آنتروپی تجمعی لگاریتمی شانون و آنتروپی تجمعی لگاریتمی نسبی کالبک-لیبلر با دقت خوبی برای شناسایی شروع ترک و شکست قابل استفاده است. یکی دیگر از دستاوردهای این پژوهش، ارایه دو معیار خرابی آزمایشی براساس آنتروپی انتشار صوت است که باعث می شود رویکرد ارزیابی براساس آنتروپی انتشار صوت برای اهداف پایش وضعیت بلادرنگ بسیار کاربردی نمایان شود. از میان دو آنتروپی تجمعی لگاریتمی شانون و نسبی کالبک-لیبلر نتایج نشان داد که آنتروپی نسبی کالبک-لیبلر، برای شناسایی شروع ترک مناسب تر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Condition monitoring of ductile cast iron with acoustic emission entropy during tensile loading: Energy parameter reporting

نویسندگان [English]

  • Ahmad Ghasemi Ghale-Bahman 1
  • Seyed Morteza Hosseini 1
  • Mohammad Azadi 1
  • Seyed Mohammad Jafari 2
1 Faculty of mechanical engineering/Semnan university
2 Faculty of mechanical and energy engineering/Shahid beheshti university
چکیده [English]

In this study, ductile cast iron (EN-GJS700-2) was evaluated to identify the initiation of cracking and failure. Uniform uniaxial tensile tests were performed on the specimens, extracted from the web of an automobile crankshaft under displacement-controlled conditions according to Iso-6892 standard. The crack initiation detection and failure were performed by the acoustic emission information entropy method. The results of this study showed that the detection of crack initiation in the method based on acoustic emission parameters is associated with uncertainties, while Shannon logarithmic cumulative entropy and Kullback-Liebler logarithmic cumulative relative entropy can be used with good accuracy to detect crack initiation and failure. Another achievement of this study is the presentation of two experimental failure criteria based on acoustic emission entropy, which makes the evaluation approach based on acoustic emission entropy for real-time monitoring purposes to be very practical. Among the two logarithmic cumulative entropies of Shannon and Kullback-Liebler relative, the results showed that Kullback-Liebler relative entropy is more suitable for detecting crack initiation.

کلیدواژه‌ها [English]

  • Acoustic emission entropy
  • Real-time condition monitoring
  • Ductile cast iron
  • Acoustic emission energy
  • tensile test
[1] Mobley, R. Keith, “An introduction to predictive maintenance”, Elsevier, 2002.
[2] جعفری، م.، بهزاد، م.، مهدیقلی، ح.، "کاربرد انتشار صوت در میان روش‌های مختلف پایش وضعیت و عیب‌یابی موتورهای احتراق داخلی"، چهارمین کنفرانس تخصصی پایش وضعیت و عیب‌یابی ماشین‌آلات ایران، تهران: دانشگاه صنعتی شریف، اسفند 1388.
[3] Chandroth, G. O., A. J. C. Sharkey, and N. E. Sharkey, "Cylinder pressures and vibration in internal combustion engine condition monitoring", In Proceedings of Comadem, 1999, Vol. 99, pp.294-297.
[4] Fonte, M., Bin Li, L. Reis, and M. Freitas, "Crankshaft failure analysis of a motor vehicle", Engineering failure analysis, 2013, Vol.35, pp.147-152.
[5] Fonte, M., V. Infante, L. Reis, and M. Freitas, "Failure mode analysis of a diesel motor crankshaft", Engineering Failure Analysis, 2017, Vol.82, pp.681-686.
[6] Witek, Lucjan, Michał Sikora, Feliks Stachowicz, and Tomasz Trzepiecinski, "Stress and failure analysis of the crankshaft of diesel engine," Engineering Failure Analysis, 2017, Vol.82, pp.703-712.
[7] Villanueva, JA Becerra, F. Jiménez Espadafor, F. Cruz-Peragon, and M. Torres García, "A methodology for cracks identification in large crankshafts", Mechanical systems and signal processing, 2011, Vol.25, no.8, pp.3168-3185.
[8] Koehler, Henry, Knut Partes, Thomas Seefeld, and Frank Vollertsen, "Influence of laser reconditioning on fatigue properties of crankshafts", Physics Procedia, 2011, Vol.12, pp.512-518.
[9] Fonte, M., P. Duarte, V. Anes, M. Freitas, and L. Reis, "On the assessment of fatigue life of marine diesel engine crankshafts", Engineering Failure Analysis, 2015, Vol.56, pp.51-57.
[10] Espadafor, F. Jiménez, J. Becerra Villanueva, and M. Torres García, "Analysis of a diesel generator crankshaft failure", Engineering Failure Analysis, 2009, Vol.16, no.7, pp.2333-2341.
[11] Asi, Osman, "Failure analysis of a crankshaft made from ductile cast iron", Engineering Failure Analysis, 2006, Vol.13, no.8, pp.1260-1267.
[12] Fonte, M., V. Anes, P. Duarte, L. Reis, and M. Freitas, "Crankshaft failure analysis of a boxer diesel motor", Engineering Failure Analysis, 2015, Vol.56, pp.109-115.
[13] Grosse, Christian U., and Masayasu Ohtsu, eds., “Acoustic emission testing”, Springer Science & Business Media, 2008.
[14] Kahirdeh, Ali, and M. M. Khonsari, "Energy dissipation in the course of the fatigue degradation: Mathematical derivation and experimental quantification," International Journal of Solids and Structures, 2015, Vol.77, pp.74-85.
[15] Kahirdeh, Ali, and M. M. Khonsari, "Criticality of degradation in composite materials subjected to cyclic loading", Composites Part B: Engineering, 2014, Vol.61, pp.375-382.
[16] Farhidzadeh, Alireza, Anastasios C. Mpalaskas, Theodore E. Matikas, Hamidreza Farhidzadeh, and Dimitrios G. Aggelis, "Fracture mode identification in cementitious materials using supervised pattern recognition of acoustic emission features", Construction and building materials, 2014, Vol.67, pp.129-138.
[17] Rato, Jorge Daniel dos Santos, "Aplicação de fibras óticas para avaliar as alterações de temperatura em compósitos laminados", PhD diss., 2015.
[18] Bravo, Alencar, Lotfi Toubal, Demagna Koffi, and Fouad Erchiqui, "Development of novel green and biocomposite materials: Tensile and flexural properties and damage analysis using acoustic emission", Materials & Design (1980-2015), 2015, Vol.66, pp.16-28.
[19] Kordatos, E. Z., D. G. Aggelis, and T. E. Matikas, "Monitoring mechanical damage in structural materials using complimentary NDE techniques based on thermography and acoustic emission", Composites Part B: Engineering, 2012, Vol.43, no.6, pp.2676-2686.
[20] Bridgman, P. W., "The thermodynamics of plastic deformation and generalized entropy", Reviews of Modern physics, 1950, Vol.22, no.1, p.56.
[21] Basaran, C., and C-Y. Yan, "A thermodynamic framework for damage mechanics of solder joints", 1998 pp.379-384.
[22] Kahirdeh, Ali, and Michael M. Khonsari, "Acoustic entropy of the materials in the course of degradation", Entropy, 2016, Vol.18, no.8, pp.280.
[23] Shannon, Claude Elwood, "A mathematical theory of communication", The Bell system technical journal, 1948, Vol.27, no.3, pp.379-423.
[24] Coifman, Ronald R., and M. Victor Wickerhauser, "Entropy-based algorithms for best basis selection", IEEE Transactions on information theory, 1992, Vol.38, no.2, pp.713-718.
[25] Kapur, Jagat Narain, Prasanna K. Sahoo, and Andrew KC Wong, "A new method for gray-level picture thresholding using the entropy of the histogram", Computer vision, graphics, and image processing, 1985, Vol.29, no.3, pp.273-285.
[26] Sabuncu, Mert Rory, “Entropy-based image registration”, Princeton University, 2006.
[27] Elforjani, M., and D. Mba, "Accelerated natural fault diagnosis in slow speed bearings with acoustic emission", Engineering Fracture Mechanics, 2010, Vol.77, no.1, pp.112-127.
[28] Guan, Xuefei, Adom Giffin, Ratneshwar Jha, and Yongming Liu, "Maximum relative entropy-based probabilistic inference in fatigue crack damage prognostics", Probabilistic engineering mechanics, 2012, Vol.29, pp.157-166.
[29] D'Angela, Danilo, Marianna Ercolino, Costanzo Bellini, Vittorio Di Cocco, and Francesco Iacoviello, "Characterisation of the damaging micromechanisms in a pearlitic ductile cast iron and damage assessment by acoustic emission testing", Fatigue & Fracture of Engineering Materials & Structures, 2020, Vol.43, no.5, pp.1038-1050.
[30] Standard No. BS EN ISO 6892-1 (2016), Metallic materials - Tensile testing, Part 1: Method of test at room temperature.
[31] Price, E. D., A. W. Lees, and M. I. Friswell, "Detection of severe sliding and pitting fatigue wear regimes through the use of broadband acoustic emission", Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2005, Vol.219, no.2, pp.85-98.