تأثیر زمان تابش فراصوت متمرکز با شدت بالا بر درمان سرطان کارسینوم هپاتوسلولار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 اپتیک و لیزر/ فیزیک/دانشگاه سمنان/سمنان/ایران

2 فیزیک/دانشکده فیزیک/دانشگاه سمنان/سمنان/ایران

چکیده

امروزه کارسینوم هپاتوسلولار یکی از رایج‌ترین و خطرناک ترین نوع سرطان کبد است. در اغلب روش‌های درمان سرطان کبد مثل استفاده از امواج مایکروویو، فرکانس رایویی و ... الکترود وارد بدن فرد بیمار می‌شود و برای سرطان‌های دارای متاستاز ناکارآمد هستند. درمان با امواج فرصوت متمرکز شده شدت بالا، HIFU، روش غیرتهاجمی مناسبی است که در آن هیچ المان خارجی وارد بدن فرد بیمار نمی‌شود و به دفعات می‌تواند مورد استفاده قرار بگیرد. اما در هر حال، موفقیت درمان به پارامترهای درمان مثل زمان تابش‌دهی وابسته است. بنابراین در این مقاله روش غیرتهاجمی گرما درمانی با HIFU برای درمان کارسینوم هپاتوسلولار شبیه‌سازی شده است. برای این منظور سیستم HIFUمدل JC ، بافت، تومور و آب در شبیه‌سازی‌ها وارد می‌شوند. تومور به صورت کره متقارن با شعاع 4/0 سانتیمتر در نظر گرفته شده و معادلات هلمهولتز و بیوگرمایی با روش المان محدود و با در نظرگرفتن شرایط مرزی و اولیه حل می‌شوند. فرکانس و توان امواج فراصوت به ترتیب MHz 1 و W150 در نظر گرفته می‌شود. بررسی توزیع دمایی و کسر نکروز بافت نشان می‌دهد که زمان تابش دهی HIFU پارامتر مهمی است. در صورتیکه درمان در زمان 100 ثانیه با این سیستم HIFU انجام شود، ناحیه بیضی‌شکل با قطر بزرگ و قطر کوچک به ترتیب 21/1 و 9/95 میلیمتر به طور کامل تخریب می‌شود. همچنین تخریب کامل تومور در زمان درمان 72 ثانیه ایجاد خواهد شد. علاوه براین، نتایج نشان می دهد که این روش در مورد تومورهای عمیق و بیضی شکل مناسب است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of HIFU exposure time on the treatment of hepatocellular carcinoma

نویسندگان [English]

  • Maryam Aliannezhadi 1
  • Tanaz Parhizkari 2
1 Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Iran
2 Faculty of physics, Semnan University, Semnan, Iran
چکیده [English]

Today, hepatocellular carcinoma is one of the most common and dangerous types of liver cancer. In most treating methods of liver cancer such as using microwaves, radio frequency radiation, etc., the electrode enters the patient's body, so these methods are ineffective in the case of metastatic cancer. High-intensity focused ultrasound (HIFU) therapy is an appropriate non-invasive treatment method which no external elements enter the patient's body and can be used frequently. However, the success of the treatment depends on treatment parameters such as exposure time. Therefore, in this paper HIFU heat therapy is simulated for the treatment of hepatocellular carcinoma as a non-invasive method. For this purpose, Model-JC HIFU System, tissue and tumor, and water are included in the simulations. The tumor is considered as a symmetrical sphere with a radius of 0.4 cm. Then Helmholtz and bioheat equations are solved by finite element method (FEM) with considering the boundary and initial conditions. The frequency and power of ultrasonic waves are 1 MHz and 150 W, respectively. Investigation of the temperature distribution and fraction of necrotic tissue declare that the exposure time of HIFU is an important parameter. If the treatment is performed in 100 seconds with this HIFU system, the oval area with large diameter and small diameter of 21.1 and 9.95 mm is completely destroyed. Also, complete tumor destruction is available in HIFU exposure time of 72 seconds. Furthermore, the results also show that this method is suitable for deep and oval tumors.

کلیدواژه‌ها [English]

  • Hepatocellular carcinoma cancer
  • Non-invasive cancer treatment
  • High intensity focused ultrasound
  • Finite Element Method
[1] Bove, Torsten, Tomasz Zawada, Jørgen Serup, Alexander Jessen, and Mattia Poli, "High‐frequency (20‐MHz) high‐intensity focused ultrasound (HIFU) system for dermal intervention: preclinical evaluation in skin equivalents", Skin Research and Technology, 2019, Vol.25, no.2, pp.217-228.
[2] Marinova, Milka, Timo Wilhelm-Buchstab, and Holger Strunk, "Advanced pancreatic cancer: high-intensity focused ultrasound (HIFU) and other local ablative therapies", In RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 2019, Vol.191, no.03, pp.216-227. Georg Thieme Verlag KG, 2019.
[3] Yang, Wen-Hui, Jun Xie, Zhi-Yong Lai, Mu-Dan Yang, Ge-Hong Zhang, Yuan Li, Jian-Bing Mu, and Jun Xu, "Radiofrequency deep hyperthermia combined with chemotherapy in the treatment of advanced non-small cell lung cancer", Chinese medical journal, 2019, Vol.132, no.8, p.922.
[4] Xu, Jinshun, Xueqing Cheng, Longfei Tan, Changhui Fu, Muneeb Ahmed, Jie Tian, Jianping Dou et al., "Microwave responsive nanoplatform via P-selectin mediated drug delivery for treatment of hepatocellular carcinoma with distant metastasis", Nano letters, 2019, Vol.19, no.5, pp.2914-2927.
[5] Aliannezhadi, Maryam, Mehran Minbashi, and Valerii Viktorovich Tuchin, "Effect of laser intensity and exposure time on photothermal therapy with nanoparticles heated by a 793-nm diode laser and tissue optical clearing", Quantum Electronics, 2018, Vol.48, no.6, p.559.
[6] Aliannezhadi, Maryam, Amir Hossein Mollazadeh, Mehran Minbashi, Nooshafarin Kazemikhoo, Fereshteh Ansari, Mohammad Ali Nilforoushzadeh, Sona Zare et al., "XML The effect of nano particles and laser intensity on cancer therapy and Tissue temperature variations after irradiation",  2018. [Online]. Available: http://icml.ir/article-1-358-fa.html.
[7] Soni, Sanjeev, Himanshu Tyagi, Robert A. Taylor, and Amod Kumar. "Effect of Nanoparticle Concentration on Thermal Damage in Nanoparticle-Assisted Thermal Therapy." In International Conference on Micro/Nanoscale Heat Transfer, vol. 49668, p. V002T13A004. American Society of Mechanical Engineers, 2016. [Online]. Available: http://dx.doi.org/10.1115/mnhmt2016-6418.
[8] Köhler, Max O., Charles Mougenot, Bruno Quesson, Julia Enholm, Brigitte Le Bail, Christophe Laurent, Chrit TW Moonen, and Gösta J. Ehnholm, "Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry", Medical physics, 2009, Vol.36, no.8, pp.3521-3535.
[9] Aliannezhadi, Maryam, and Masoomeh Faez, "Cancer treatment by High-Intensity Focused Ultrasound (HIFU)", 2017, pp.40-53. [Online]. Available: http://rjms.iums.ac.ir/article-1-4862-en.html.
[10] Battais, Amélie, Victor Barrère, W. Apoutou N'Djin, Aurélien Dupré, Michel Rivoire, and David Melodelima, "Fast and Selective Ablation of Liver Tumors by High-Intensity Focused Ultrasound Using a Toroidal Transducer Guided by Ultrasound Imaging: The Results of Animal Experiments", Ultrasound in Medicine & Biology, 2020, Vol.46, no.12, pp.3286-3295.
[11] Zhu, Wenjun, Qian Chen, Qiutong Jin, Yu Chao, Lele Sun, Xiao Han, Jun Xu et al., "Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy", Nano Research, 2021, Vol.14, no.1, pp.212-221.
[12] Shin, Soo Hyun, Sang Hyun Park, Seung Won Kim, Minsun Kim, and Daehong Kim, "Fluorine MR imaging monitoring of tumor inflammation after high-intensity focused ultrasound ablation", Radiology, 2018, Vol.287, no.2, pp.476-484.
[13] Haddadi, Samaneh, and Mohammad Taghi Ahmadian, "Analysis of nonlinear acoustic wave propagation in HIFU treatment using Westervelt equation", Scientia Iranica, 2018, Vol.25, no.4, pp. 2087-2097.
[14] van Rhoon, Gerard C., "Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring?", International Journal of Hyperthermia, 2016, Vol.32, no.1, pp.50-62.
[15] Solovchuk, Maxim A., Tony WH Sheu, Marc Thiriet, and Win-Li Lin, "On a computational study for investigating acoustic streaming and heating during focused ultrasound ablation of liver tumor", Applied Thermal Engineering, 2013, Vol.56, no.1-2, pp.62-76.
[16] Shen, Wensheng, Jun Zhang, and Fuqian Yang, "Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue", Mathematical and Computer Modelling, 2005, Vol.41, no.11-12, pp.1251-1265.
[17] Carter, Matt, Art Sullivan, Kenny Byers, and Michael Jessel, "Optimizing Ultrasonic Intensity for High Intensity Focused Ultrasound Therapy", 2014.
[18] Mertyna, Pawel, Wallace Goldberg, Wei Yang, and S. Nahum Goldberg, "Thermal ablation: A comparison of thermal dose required for radiofrequency-, microwave-, and laser-induced coagulation in an ex vivo bovine liver model", Academic radiology, 2009, Vol.16, no.12, pp.1539-1548.