مروری بر روش پرداختکاری ارتعاشی با استفاده از مواد ساینده در تولید قطعات با دقت بالا

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران، ایران

2 دانشیار مهندسی مکانیک، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران

چکیده

در دهه‌های اخیر با پیشرفت روز افزون فناوری و ساخت سیستم‌های پیچیده در صنایع مختلفی همچون الکترونیک، هوافضا، پزشکی، اپتیک و ...، ضرورت ساخت قطعات با صافی و کیفیت سطح بالا بیش از پیش احساس می‌شود. در این راستا روش‌های نوینی مانند روش ماشینکاری تخلیه الکتریکی، ماشینکاری الکتروشیمیایی، ماشینکاری پرتو لیزری و... جهت ماشینکاری و پرداخت سطوح ابداع و به‌کارگرفته شده است. با توجه به مزایا و معایب هر کدام از روش‌های ماشینکاری قطعات، انتخاب گزینه مناسب جهت فرآیند پرداختکاری با چالش‌هایی مواجه می‌باشد. یکی از روش‌های پرداختکاری که امروزه مورد توجه پژوهشگران و صنعتگران در حوزه تولید قطعات دقیق واقع شده است، پرداختکاری سایشی با استفاده از پودرهای سرامیکی پیشرفته می‌باشد. فراهم بودن طیف‌های وسیعی از انواع انرژی همچون انرژی‌های مغناطیسی، هیدرولیکی، پنوماتیکی و... جهت به حرکت درآوردن ذرات ساینده، در کنار کمترین اثرات حرارتی و شیمیایی بر روی سطح قطعات منجر به جذابیت بیشتر این روش در میان پژوهشگران حوزه ساخت و تولید شده است. با توجه به گستردگی روش‌های پرداختکاری با استفاده از پودرهای سرامیکی، در این مطالعه به بررسی روش پرداختکاری قطعات مبتنی بر ارتعاشات بستر ذرات ساینده و پیشرفت‌های این حوزه پرداخته شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Abrasive Vibratory Polishing Process for Manufacturing of High Precision Parts; A Review

نویسندگان [English]

  • sajjad Beigmoradi 1
  • Mehrdad Vahdati 2
1 Department of Mechanical Engineering, K N Toosi University of Technology, Tehran, Iran.
2 Department of Mechanical Engineering, K N Toosi University of Technology, Tehran, Iran.
چکیده [English]

Advanced technologies and complex systems in different industrial areas such as electronics, aerospace, medicine, optics, and so on require producing parts with high surface quality and low roughness. To this end, different non-conventional methodologies such as electro discharge machining, electro chemical machining, laser beam machining, and so forth are proposed for machining and polishing parts that each one has pros and cons. Applying advanced abrasive ceramic grits for polishing is one of the prevalent techniques that has attracted researcher and manufacturer’s attention to produce high precision workpieces. Beside minimum thermal and chemical side effects of abrasive powders on the workpieces, this technique can be applied with various types of energy such as hydraulics, pneumatics, magnetics, and etc. Abrasive polishing uses vibration energy to generate kinetic energy in the powders in order to polish the surface of the parts. even though this method was applied for many years,,, There are some unkown aspects of this process. The focus of this work is on the mathematical modeling and numerical simulations which is done recently by some of researchers in this field.

کلیدواژه‌ها [English]

  • Non-Conventional Machining
  • Precision Polishing
  • Vibratory Polishing
  • Surface roughness
  • Material Removal Rate
[1] Domblesky, J., R. Evans, and Vikram Cariapa, "Material removal model for vibratory finishing", International journal of production research, 2004, Vol.42, no.5, pp.1029-1041.
[2] Kang, Young Sup, Fukuo Hashimoto, Stephen P. Johnson, and Jerry P. Rhodes, "Discrete element modeling of 3D media motion in vibratory finishing process", CIRP Annals, 2017, Vol.66, no.1, pp.313-316.
[3] Hashimoto, Fukuo, Hitomi Yamaguchi, Peter Krajnik, Konrad Wegener, Rahul Chaudhari, Hans-Werner Hoffmeister, and Friedrich Kuster, "Abrasive fine-finishing technology", CIRP Annals, 2016, Vol.65, no.2, pp.597-620.
[4] Bifano, Thomas G., Thomas A. Dow, and Ronald O. Scattergood, "Ductile-regime grinding: a new technology for machining brittle materials", 1991, pp.184-189.
[5] Brecker, J. N., and M. C. Shaw, "Specific energy in single point grinding", Annals of the CIRP, 1974, Vol.23, no.1, pp.93-94.
[6] Brinksmeier, E., Y. Mutlugünes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, "Ultra-precision grinding", CIRP annals, 2010, Vol.59, no.2, pp.652-671.
[7] King, Robert I., and Robert S. Hahn., "Handbook of modern grinding technology", Chapman and Hall, New York, 1986.
[8] Malkin, S., "Grinding wheel wear", Grinding technology-theory and application of machining with abrasives. 1989, pp.197-221.
[9] Saljé, O. E., and R. Paulmann, "Relations between abrasive processes", CIRP Annals, 1988, Vol.37, no.2, pp.641-648.
[10] Schlesinger, Georg, “Die werkzeugmaschinen; grundlagen, berechnung und konstruktion”, J. Springer, 1936.
[11] Snoeys R, Peters J., “The Significance of Chip Thickness in Grinding”, Annals of the CIRP, 1974, Vol.23, no.2, pp.227–237.
[12] Tönshoff, H. K., J. Peters, I. Inasaki, and T. Paul, "Modelling and simulation of grinding processes", CIRP annals, 1992, Vol.41, no.2, pp.677-688.
[13] Preston, F. W., "The theory and design of plate glass polishing machines", Journal of Glass Technology, 1927, Vol.11, no.44, pp.214-256.
[14] Hashimoto, Fukuo, Stephen P. Johnson, and Rahul G. Chaudhari, "Modeling of material removal mechanism in vibratory finishing process", CIRP Annals, 2016, Vol.65, no.1, pp.325-328.
[15] Yabuki, A., M. R. Baghbanan, and J. K. Spelt, "Contact forces and mechanisms in a vibratory finisher", Wear, 2002, Vol.252, no.7-8, pp.635-643.
[16] Hashimoto, Fukuo, and Daniel B. DeBra, "Modelling and optimization of vibratory finishing process", CIRP annals, 1996, Vol.45, no.1, pp.303-306.
[17] Domblesky, J., V. Cariapa, and R. Evans, "Investigation of vibratory bowl finishing", International journal of production research, 2003, Vol.41, no.16, pp.3943-3953.
[18] Prakasam, Pradeep K., Sylvie Castagne, and Sathyan Subbiah, "Mechanism of surface evolution in vibratory media finishing", Procedia Manufacturing, 2015, Vol.1, pp.628-636.
[19] Uhlmann, Eckart, Arne Dethlefs, and Alexander Eulitz, "Investigation of material removal and surface topography formation in vibratory finishing", Procedia CIRP, 2014, Vol.14, pp.25-30.
[20] Pandiyan, Vigneashwara, Sylvie Castagne, and Sathyan Subbiah, "High frequency and amplitude effects in vibratory media finishing", Procedia Manufacturing, 2016, Vol.5 pp.546-557.
[21] Sangid, Michael D., James A. Stori, and Placid M. Ferriera, "Process characterization of vibrostrengthening and application to fatigue enhancement of aluminum aerospace components—part II: Process visualization and modeling", The International Journal of Advanced Manufacturing Technology, 2011, Vol.53, no.5-8, pp.561-575.
[22] Norouzi, Hamid Reza, Reza Zarghami, Rahmat Sotudeh-Gharebagh, and Navid Mostoufi, “Coupled CFD-DEM modeling: formulation, implementation and application to multiphase flows”, John Wiley & Sons, 2016.
[23] Crowe, C., M. Sommerfeld, Y. Tsuji, and C. Crowe, "Multiphase Flows with Droplets and Particles CRC", Boca Raton, FL, 1998.
[24] Di Renzo, Alberto, and Francesco Paolo Di Maio, "Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes", Chemical engineering science, 2004, Vol.59, no.3, pp.525-541.
[25] Stevens, A. Bꎬ, and C. M. Hrenya, "Comparison of soft-sphere models to measurements of collision properties during normal impacts", Powder Technology, 2005, Vol.154, no.2-3, pp.99-109.