تأثیر حرارت و رطوبت بر انتشار امواج در نانوپوسته ‏های متحرک حامل نانوسیال مغناطیسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 گروه مهندسی مکانیک، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر، ایران

3 هیات علمی/ دانشگاه صنعتی اصفهان

چکیده

در این تحقیق انتشار موج در نانوپوسته‏های کربنی استوانه‏ای مدور دارای حرکت محوری حاوی نانوسیال مغناطیسی برای نخستین بار تحت سه نوع میدان نیروی حرارتی و رطوبتی طولی، محیطی و هم‏زمان طولی- محیطی مورد بررسی قرار می‏گیرد. میزان تأثیر نانوسیال مغناطیسی بر انتشار موج حاصله با استفاده از اعداد نادسن و هارتمن درنظر گرفته‏ می‏شود. معادلات حاکم بر مسئله‏ی برهم‏کنش نانوسیال-نانوسازه تحت نیروهای حرارتی و رطوبتی با استفاده از یک مدل ابداعی پیشنهادی براساس تئوری تغییر شکل برشی مرتبه بالا در مختصات استوانه‏ای و با درنظر گرفتن پارامترهای سینوسی و الاستیسیته غیرمحلی با کمک اصل همیلتون و معادلات تعمیم یافته ناویر-استوکس استخراج می‏شوند. نتایج حاصل از حل تحلیلی معادلات حاکم حاکی از تطابق بسیار خوب نتایج مدل پیشنهادی در این تحقیق با نتایج حاصل از شبیه‏سازی‏های دینامیک مولکولی است. علاوه‌بر این، اثر تغییرات چگالی‏های نانوسازه و نانوسیالات مغناطیسی (مایع و گاز) به موجب میدان‏های حرارتی و رطوبت حرارتی و اثرات سرعت محوری نانوسازه و نانوسیال عبوری بر پراکندگی فونون‏ها و فرکانس طبیعی نانوسیستم برای نخستین بار مورد بحث قرار می‎گیرند.


 


 

 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Heat and Humidity on Wave propagation of the Axially Moving Nanoshells Conveying Magnetic Nanofluid Flow

نویسندگان [English]

  • soheil oveissi 1
  • mehdi salehi 1
  • aazam ghassemi 1
  • S.Ali eftekhari 2
  • Saeed Ziaei-Rad 3
1 Department of Mechanical engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran
2 Department of Mechanical engineering, Islamic Azad University, Khomeinishahr Branch, Khomeinishahr, Iran
3 Department of Mechanical engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
چکیده [English]

In this study, the wave propagation in axially moving circular cylindrical carbon nanoshells transmitting magnetic nanofluid is investigated under three types of longitudinal, ambient, and simultaneous longitudinal-circumferential thermal and hygrothermal forces fields. The effect of magnetic nanofluid on wave dispersion is studied and considered using Knudsen and Hartman numbers. The equations governing the problem of nanofluid-nanostructure interaction under thermal and thermal humidity forces are derived using a new proposed model based on high-order shear deformation theory in cylindrical coordinates considering sinusoidal parameters and non-local elasticity utilizing Hamilton's principle and generalized Navier-Stokes equations. The results obtained by the analytical solution of the governing dynamic equations using the proposed model indicate a very good agreement compared with the obtained outcomes by the molecular dynamics simulations. In addition, the effect of changes in the densities of nanostructures and different nanofluids (liquid or gas) due to the applied thermal and hygrothermal fields, and the effects of the axial velocity of the nanostructure and the internal passing nanofluid on the scattering of phonons, phase velocity, and the natural frequency of the nanosystem are investigated.

کلیدواژه‌ها [English]

  • wave propagation
  • axially moving circular cylindrical carbon nanoshells
  • high-order shear deformation theory in cylindrical coordinates considering sinusoidal parameters thermal and hygrothermal fields
[1] Feynman, Richard P., "There’s plenty of room at the bottom: An invitation to enter a new field of physics", Miniaturization, Reinhold, 1961.
[2] Kroto, H. W., J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smaley, "C60: buckiminsterfulerene", Nature, Vol. 318, pp. 162-163, 1985.
[3] Ban, Siyuan, Xuchen Nie, Zhihao Lei, Jiabao Yi, Ajayan Vinu, Yang Bao, and Yanpeng Liu, "Emerging low-dimensional materials for nanoelectromechanical systems resonators", Materials Research Letters, 2023, Vol.11, no.1, pp.21-52.
[4] Wan, Zhengyi, Yurui Gao, Xiangyu Chen, Xiao Cheng Zeng, Joseph S. Francisco, and Chongqin Zhu, "Anomalous water transport in narrow-diameter carbon nanotubes", Proceedings of the National Academy of Sciences, 2022, Vol.119, no.39, p.e2211348119.
[5] Arda, Mustafa, and Metin Aydogdu, "Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass", Mechanics Based Design of Structures and Machines, 2022, Vol.50, no.3, pp.841-857.
[6] Khursheed, Rubiya, Kamal Dua, Sukriti Vishwas, Monica Gulati, Niraj Kumar Jha, Ghalib Mohammed Aldhafeeri, Fayez Ghadeer Alanazi et al., "Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives", Biomedicine & Pharmacotherapy, 2022, Vol.150, p.112951.
[7] Eringen, A. Cemal, and Byoung Sung Kim, "Relation Between Non-Local Elasticity and Lattice Dynamics", 1977.
[8] Aydogdu, Metin, and Seckin Filiz, "Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity", Physica E: Low-dimensional Systems and Nanostructures, 2011, Vol.43, no.6, pp.1229-1234.
[9] Oveissi, Soheil, and Aazam Ghassemi, "Longitudinal and transverse wave propagation analysis of stationary and axially moving carbon nanotubes conveying nano-fluid", Applied Mathematical Modelling, 2018, Vol.60, pp.460-477.
[10] Safarpour, Hamed, Seyed Ali Ghanizadeh, and Mostafa Habibi, "Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory", The European Physical Journal Plus, 2018, Vol.133, no.12, p.532.
[11] Jiang, H., B. Liu, Y. Huang, and K. C. Hwang, "Thermal expansion of single wall carbon nanotubes", J. Eng. Mater. Technol., 2004, Vol.126, no.3, pp.265-270.
[12] Tang, Hong, Hong-Liang Dai, and Yi Du, "Effect of hygrothermal load on amplitude frequency response for CFRP spherical shell panel", Composite Structures, 2022, Vol.281, p.114978.
[13] Wang, Q., and V. K. Varadan, "Wave characteristics of carbon nanotubes", International Journal of Solids and Structures, 2006, Vol.43, no.2, pp.254-265.
[14] Xu, Zhichao, Zhifu Zhang, Jiaxuan Wang, Xu Chen, and Qibai Huang, "Acoustic analysis of functionally graded porous graphene reinforced nanocomposite plates based on a simple quasi-3D HSDT", Thin-Walled Structures, 2020, Vol.157, p.107151.
[15] Nguyen, Tuan HA, and Jarkko Niiranen, "Nonlocal continuum damage modeling for functionally graded plates of third-order shear deformation theory", Thin-Walled Structures, 2021, Vol.164, p.107876.
[16] Pham, Quoc-Hoa, and Phu-Cuong Nguyen, "Dynamic stability analysis of porous functionally graded microplates using a refined isogeometric approach", Composite Structures, 2022, Vol.284, p.115086.
[17] Amabili, Marco, “Nonlinear vibrations and stability of shells and plates”, Cambridge University Press, 2008.
[18] Amabili, Marco, and J. N. Reddy, "A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells", International Journal of Non-Linear Mechanics, 2010, Vol.45, no.4, 2010, pp.409-418.
[19] Mantari, J. L., and C. Guedes Soares, "Finite element formulation of a generalized higher order shear deformation theory for advanced composite plates", Composite Structures, 2013, Vol.96, pp.545-553.
[20] Argyris, John, and Lazarus Tenek, "Recent advances in computational thermostructural analysis of composite plates and shells with strong nonlinearities", 1997, pp.285-306.
[21] Kadoli, Ravikiran, and N. Ganesan, "Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition", Journal of sound and vibration, 2006, Vol.289, no.3, pp.450-480.
[22] Safarpour, Hamed, Seyed Ali Ghanizadeh, and Mostafa Habibi, "Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory", The European Physical Journal Plus, 2018, Vol.133, no.12, p.532.
[23] Rao, Yan-Ni, Qi He, and Hong-Liang Dai, "A micromechanical model for effective hygro-thermo-elastic properties of fiber reinforced composites with functionally graded interphases", Applied Mathematical Modelling, 2021, Vol.92, pp.78-98.
[24] Vinson, Jack R., “The behavior of sandwich structures of isotropic and composite materials”, Routledge, 2018.
[25] Arash, B., and Q. Wang, "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Computational materials science, 2012, Vol.51, no.1, pp.303-313.
[26] Selim, Mahmoud M., and Saad Althobaiti, "Wave-based method for longitudinal vibrational analysis of irregular single-walled carbon nanotube with elastic-support boundary conditions", Alexandria Engineering Journal, 2022, Vol.61, no.12, pp.12129-12138.
[27] Liu, Jun, Yingyan Zhang, Yihe Zhang, Sritawat Kitipornchai, and Jie Yang, "Machine learning assisted prediction of mechanical properties of graphene/aluminium nanocomposite based on molecular dynamics simulation", Materials & Design, 2022, Vol.213, p.110334.
[28] Hong, C. C., "Advanced dynamic thermal vibration of thick FGM plates-cylindrical shells", Ocean Engineering, 2022, Vol.266, p.112701.
[29] Stein, Manuel, "Nonlinear theory for plates and shells including the effects of transverse shearing", AIAA journal, 1986, Vol.24, no.9, pp.1537-1544.
[30] Shen, Hui-Shen, “Functionally graded materials: nonlinear analysis of plates and shells”, CRC press, 2016.
[31] Wang, Guoping, Yu Zhang, and Mohammed Arefi, "Three-dimensional exact elastic analysis of nanoplates", Archives of Civil and Mechanical Engineering, 2021, Vol.21, no.3, pp.1-14.
[32] Oveissi, Soheil, Aazam Ghassemi, Mehdi Salehi, S. Ali Eftekhari, and Saeed Ziaei-Rad, "Hydro–Hygro–Thermo–Magneto–Electro​ elastic wave propagation of axially moving nano-cylindrical shells conveying various magnetic-nano-fluids resting on the electromagnetic-visco-Pasternak medium," Thin-Walled Structures, 2022, Vol.173, p.108926.
[33] Karniadakis, George, Ali Beskok, and Narayan Aluru, “Microflows and nanoflows: fundamentals and simulation”, Vol. 29, Springer Science & Business Media, 2006.
[34] Oveissi, Soheil, Davood Toghraie, S. Ali Eftekhari, and Ali J. Chamkha, "Instabilities of SWCNT conveying laminar, incompressible and viscous fluid flow: effects of Knudsen number, the Winkler, the Pasternak elastic and the viscoelastic medium", International Journal of Numerical Methods for Heat & Fluid Flow, 2019.
[35] Pollard, WGt, and Richard David Present, "On gaseous self-diffusion in long capillary tubes", Physical Review, 1948, Vol.73, no.7, p.762.
[36] Sadeghi-Goughari, Moslem, Soo Jeon, and Hyock-Ju Kwon, "Fluid structure interaction of cantilever micro and nanotubes conveying magnetic fluid with small size effects under a transverse magnetic field", Journal of Fluids and Structures, 2020, Vol.94, p.102951.
[37] Ali, Kashif, Sohail Ahmad, Ozaira Baluch, Wasim Jamshed, Mohamed R. Eid, and Amjad Ali Pasha, "Numerical study of magnetic field interaction with fully developed flow in a vertical duct", Alexandria Engineering Journal, 2022, Vol.61, no.12, pp.11351-11363.
[38] Zhang, Y. Y., C. M. Wang, and V. B. C. Tan, "Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics", Advances in Applied Mathematics and Mechanics, 2009, Vol.1, no.1, pp.89-106.
[39] Ansari, R., and H. Rouhi, "Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach", International Journal of Nano Dimension, 2015, Vol.6, no.5, pp.453-462.
[40] Ansari, R., S. Ajori, and B. Arash, "Vibrations of single-and double-walled carbon nanotubes with layerwise boundary conditions: a molecular dynamics study", Current Applied Physics, 2012, Vol.12, no.3, pp.707-711.
[41] Wen, Han, Min-Fan He, Yong Huang, and Jian Chen, "Free vibration analysis of single-walled carbon nanotubes based on the nonlocal higher-order cylindrical beam model", Acta Acustica united with Acustica, 2018, Vol.104, no.2, pp.284-294.
[42] Mirsky, I., and G. Herrmann, "Nonaxially symmetric motions of cylindrical shells", The Journal of the Acoustical Society of America, 1959, Vol.31, no.2, pp.250-250.
[43] Reddy, J. N., "Exact solutions of moderately thick laminated shells", Journal of Engineering Mechanics, 1984, Vol.110, no.5, pp.794-809.
[44] Khalili, S. M. R., A. Davar, and K. Malekzadeh Fard, "Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory", International journal of Mechanical sciences, 2012, Vol.56, no.1, pp.1-25.
[45] Armenàkas, Anthony E., Denos C. Gazis, and George Herrmann, “Free vibrations of circular cylindrical shells”, Elsevier, 2016.
[46] Shokrgozar, Ali, Hamed Safarpour, and Mostafa Habibi, "Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, Vol.234, no.2, pp.512-529.
[47] Vinson, J. R., R. B. Pipes, Willian J. Walker, and Donald R. Ulrich, The Effects of Relative Humidity and Elevated Temperature on Composite Structures, Delaware Univ Newark Center for Composite Materials, 1976.