بررسی رابطه طول ترک و پهنای باند فرکانسی ساطع شده از نمونه سنگ تحت تنش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس

2 گروه مکانیک سنگ بخش معدن دانشکده فنی و مهندسی دانشگاه تربیت مدرس

3 شرکت ره کاو هوشمند بایا، مرکز نوآوری هاب اصفهان

چکیده

چکیده
اعمال فشار بر سنگ منجر به ایجاد ترک‌های جدید و یا گسترش ترک‌های موجود می­شود. این امر باعث ایجاد و انتشار امواج صوتی می­شود. با تحقیق بر روی این امواج، رشد و توسعه ترک بررسی و زمان شکست نهایی نمونه قابل پیش­بینی است. برای مطالعه این سیگنال‌ها، از روش نشر آوایی استفاده می­شود. در این روش نمونه سنگ که در اطراف آن تعدادی سنسور قرار دارد بارگذاری می­شود. سپس در طول آزمایش، سیگنال‌های ساطع شده توسط سنسورها ثبت می­شوند. با جمع‌آوری و تحلیل این سیگنال‌ها می­توان درخصوص گسترش ترک مطالعه نمود. در این تحقیق، پهنای باند فرکانسی امواج ساطع شده از سنگ تحت بارگذاری فزاینده بررسی شده است، و از داده‌های به‌دست آمده از یک آزمایش استفاده شد. نمونه سنگ گرانیت به ابعاد 1× 3 × 6 اینچ تحت بارگذاری تک محوره تا زمان رسیدن به شکست نهایی قرار گرفته و سیگنال‌های صوتی جمع‌آوری شد. برای تحلیل داده­ها از برنامه متلب بهره گرفته و برای تحلیل سیگنال‌ها از تبدیل موجک استفاده شد. پهنای باند فرکانسی و فرکانس مرکزی سیگنال‌های دریافتی تعیین شد. تحلیل‌ها مشخص نمود که با گذشت زمان و رسیدن به نقطه شکست نهایی پهنای باند فرکانسی سیگنال‌ها و همچنین فرکانس مرکزی آنها کاهش می‌یابد. کاهش پهنای باند فرکانسی خود مبین آن است که با رسیدن به شکست نهایی سنگ، طول ترک‌های ایجاد شده و یا طول قسمت‌های رشد یافته ترک‌های قبلی افزایش می­یابد. این امر، نتایج تئوریک به‌دست آمده در تحقیقات قبلی را به‌صورت آزمایشگاهی تأیید می‌کند.






 


 

 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A statistical study of the relationship between crack length and frequency bandwidth emitted from the crack

نویسندگان [English]

  • Morteza Ahmadi 1
  • Amin Mousavijad 2
  • Ziba Ebrahimian 3
1 Rock mechanics Gr. mining Dept. Eng. Faculty Tarbiat Modares Uni.
2 Rock Mechanics Gr. Mining Dept. Eng. Faculty Tarbiat Modares Uni.
3 Rah Kav hoshmand baya Co, Isfahan Hub Innovation Center
چکیده [English]

In structure of rocks, there are a number of pores, joints and small cracks which called discontinuities. Studies showed that these discontinuities propagate under load and emit acoustic wave (signals). Acoustic emission (AE) method is used to study these signals. In AE method, a rock sample is loaded and a number of sensors are placed around it. Then during the loading test by growing the cracks signals emit and collecting by sensors. By collecting and analyzing these signals in the frequency dimension, mechanism of crack propagation could be studied. In this research, frequency bandwidth of the waves emitted from a rock sample under increasing load has been investigated. Data which obtained from an experiment on rock sample have been used for study. A sample of granite with dimensions of 1*3*6 inches was subjected to uniaxial loading. A code was written to change the data and executed in MATLAB. By execution the code, initially, raw data is transmitted into domain-time signals. Then, time-amplitude dimension signals converted to the frequency dimension using wavelet transform. Analyses were carried out with outputs of code and in form of diagrams and figures are presented. Analysis showed that by elapse of time and crack growth in the experiment, there was an inverse relationship between the length of the growing crack and frequency bandwidth of the emitted wave, and the frequency bandwidth decreased.

کلیدواژه‌ها [English]

  • Emission in rock
  • Wavelet transforms
  • Non-destructive experiment
  • Frequency bandwidth
[1] J. Kaiser, “An Investigation into the Occurrence of Noises in Tensile Tests or a Study of Acoustic Phenomena in Tensile Tests”, Munich: Tech. Hosch. Munchen, 1950.
[2] Costin, Laurence S., "Time-dependent deformation and failure", Fracture mechanics of rock, 1987, Vol.167, p.215.
[3] Ashby, M. F., and C. G. Sammis., "The damage mechanics of brittle solids in compression", Pure and applied geophysics, 1990, Vol.133, no.3, pp.489-521.
[4] Holcomb, D. J., and L. S. Costin, "Detecting damage surfaces in brittle materials using acoustic emissions", 1986, pp.536-544.
[5] Sondergeld, Carl H., and Louis H. Estey, "Acoustic emission study of microfracturing during the cyclic loading of Westerly granite", Journal of Geophysical Research: Solid Earth , 1981, Vol.86, no.B4, pp.2915-2924.
[6] Nordlund, Erling, and Chunlin Li, "Acoustic emission and the Kaiser effect in rock materials", In The 31st US Symposium on Rock Mechanics (USRMS), OnePetro, 1990.
[7] Li, Bing Q., Bruno Gonçalves da Silva, and Herbert Einstein, "Laboratory hydraulic fracturing of granite: acoustic emission observations and interpretation", Engineering Fracture Mechanics, 2019, Vol.209, pp.200-220.
[8] Kiyoo, M. O. G. I., "Study of elastic shocks caused by the fracture of heterogeneous materials and its relations to earthquake phenomena", Bulletin of the Earthquake Research Institute, University of Tokyo: Tokyo, Japan, 1962, pp.125-173.
[9] Wass, Max, and Thomas C. Hanks, "The source parameters of the San Fernando earthquake inferred from teleseismic body waves", Bulletin of the Seismological Society of America, 1972, Vol.62, no.2, pp.591-602.
[10] Hanks, Thomas C., and Max Wyss, "The use of body-wave spectra in the determination of seismic-source parameters", Bulletin of the Seismological Society of America, 1972, Vol.62, no.2, pp.561-589.
[11] Lockner, David A., and James D. Byerlee, "How geometrical constraints contribute to the weakness of mature faults", Nature, 1993, Vol.363, no.6426, pp.250-252.
[12] Lei, X. L., K. Masuda, O. Nishizawa, L. Jouniaux, L. Liu, W. Ma, T. Satoh, and K. Kusunose, "Three typical stages of acoustic emission activity during the catastrophic fracture of heterogeneous faults in jointed rocks", Jou. Struct. Geol, 2004, Vol.26, pp.247-258.
[13] Lei, Xinglin, "Typical phases of pre-failure damage in granitic rocks under differential compression", Geological Society, London, Special Publications, 2006, Vol.261, no.1, pp.11-29.
[14] Lei, Xinglin, and Takashi Satoh, "Indicators of critical point behavior prior to rock failure inferred from pre-failure damage", Tectonophysics, 2007, Vol.431, no.1-4, pp.97-111.
[15] Papadrakakis, M., and M. Fragiadakis, "Relation of Frequency Bandwidth to Crack Length in Stressed Rocks", 2017.
[16] Ebrahimian, Z., M. Ahmadi, S. Sadri, B. Q. Li, and Omid Moradian, "Wavelet analysis of acoustic emissions associated with cracking in rocks", Engineering Fracture Mechanics, 2019, Vol.217, p.106516.
[17] Wong, L. N. Y., and H. H. Einstein, "Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation", Rock Mechanics and Rock Engineering, 2009, Vol.42, no.3, pp.475-511.
[18] Gupta, Samta, and A. Prabhakar Rao, "Fingerprint based gender classification using discrete wavelet transform & artificial neural network", International Journal of Computer Science and mobile computing, 2014, Vol.3, no.4, pp.1289-1296