مواد متخلخل جاذب صوت بخش دوم: مکانیزم های جذب صوت و مدلسازی

نوع مقاله : مقاله ترویجی

نویسندگان

1 استاد، دانشگاه صنعتی امیر کبیر

2 گروه مهندسی مکانیک دانشگاه تفرش

چکیده

در بخش اول این مقاله اهمیت مواد متخلخل در کاهش غیرفعال صدا، انواع مواد متخلخل، کاربردهای متنوع این دسته از مواد، پارامترهای آکوستیکی و غیرآکوستیکی مربوطه و نحوه اندازه­گیری آنها تشریح شد. در این بخش از مقاله روش­های آزمایشگاهی مبتنی بر استانداردهای بین­المللی مورد استفاده در اندازه­گیری خواص آکوستیکی ضریب جذب و ضریب افت انتقال صوت ارائه شده است. سپس ضمن ارائه نگاهی فراگیر به مکانیزم­های جذب صوت در مواد متخلخل، انواع مکانیزم­های جذب صوت شامل اتلاف­های ویسکوز، حرارتی و ساختاری، به‌صورت مبسوط تشریح می­شود. همچنین مدل­های متفاوت بیان‌کننده مشخصات آکوستیکی و مکانیکی مواد متخلخل، شامل مدل‌های تجربی، آزمایشگاهی و تحلیلی آورده می­شود. در پایان به زمینه­های پژوهشی سال­های اخیر در موضوعات مواد متخلخل اشاره مختصری شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Porous Sound-Absorbing Materials Part II: Sound Absorption Mechanisms and Modeling

نویسندگان [English]

  • Abdolreza Ohadi Hamedani 1
  • Abolfazl Hasani Baferani 2
1 Professor, Department of Mechanical Engineering, Amirkabir University
2 Department of Mechanical Engineering, Tafresh University
چکیده [English]

The first part of this paper discusses the importance of porous materials in passive noise reduction, types of porous materials, various applications of these materials, relevant acoustical and non-acoustical parameters, and different methods to measure them based on international standards were explained. In this part of the paper, definitions and experimental methods used in measuring the acoustic properties of the absorption coefficient and the sound transmission loss based on international standards are presented. Then, while providing a comprehensive discussion of the sound absorption mechanisms in porous materials, the types of sound absorption mechanisms, including viscous, thermal, and structural losses, are described. The effect of different parameters on the variation of sound absorption of porous materials has been presented. Also, various models, including experimental, laboratory, and analytical models used for expressing the acoustical and mechanical properties of porous materials, are discussed. Finally, a brief review is present for recent research areas on porous materials.

کلیدواژه‌ها [English]

  • Acoustic absorption coefficient
  • Sound transmission Loss
  • ViscousLoss
  • Thermal damping
  • structural damping
[1] Ver, Istvan L., and Leo L. Beranek, "Noise and vibration control engineering: principles and applications", John Wiley & Sons, 2006.
[2] Fahy, Frank J., Foundations of engineering acoustics, Elsevier, 2000.
[3] Everest, F.A. and K.C. Pohlmann, “Master Handbook of Acoustics”, 5ht ed., New York: McGraw-Hill, 2009
[4] Standard, I. S. O., "Determination of sound absorption coefficient and impedance in impedance tubes, Part 1: Transfer-function method. ISO 10534-2", International Standardization Organization, 1998, pp.11-15.
[5] ASTM-E1050-10, “Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System”, 2010.
[6] Fahy, Frank J., and Paolo Gardonio. Sound and structural vibration: radiation, transmission and response. Elsevier, 2007.
[7] Raichel, Daniel R., “The science and applications of acoustics”, Springer Science & Business Media, 2006.
[8] Möser, M., “Engineering acoustics: an introduction to noise control”, Second ed., Berlin: Springer, 2009.
[9] ASTM-E-2611-09, “Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method”, 2009.
[10] Kuczmarski, Maria A., and James C. Johnston, "Acoustic absorption in porous materials", 2011.
[11] Biot, Maurice A., "Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range", The Journal of the acoustical Society of America, 1956, Vol.28, no.2, pp.179-191.
[12] Delany, M. E., and E. N. Bazley, "Acoustical properties of fibrous absorbent materials", Applied acoustics, 1970, Vol.3, no.2, pp.105-116.
[13] Biot, Maurice A., "Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range", The Journal of the acoustical Society of America, 1956, Vol.28, no.2, pp.179-191.
[14] Biot, Maurice A., "Generalized theory of acoustic propagation in porous dissipative media", The Journal of the Acoustical Society of America, 1962, Vol.34, no.9A, pp.1254-1264.
[15] Atalla, Noureddine, Raymond Panneton, and Patricia Debergue, "A mixed displacement-pressure formulation for poroelastic materials", The Journal of the Acoustical Society of America, 1998, Vol.104, no.3, pp.1444-1452.
[16] Dazel, Olivier, Bruno Brouard, Claude Depollier, and Stéphane Griffiths, "An alternative Biot’s displacement formulation for porous materials", The Journal of the Acoustical Society of America, 2007, Vol.121, no.6, pp.3509-3516.
[17] Champoux, Yvan, and Jean‐F. Allard, "Dynamic tortuosity and bulk modulus in air‐saturated porous media", Journal of applied physics, 1991, Vol.70, no.4, pp.1975-1979.
[18] Allard, Jean, and Noureddine Atalla, “Propagation of sound in porous media: modelling sound absorbing materials”, 2e. John Wiley & Sons, 2009.
[19] Attenborough, Keith, "Acoustical characteristics of porous materials", Physics reports, 1982, Vol.82, no.3, pp.179-227.
[20] Baferani, A. Hasani, A. A. Katbab, and A. R. Ohadi, "The role of sonication time upon acoustic wave absorption efficiency, microstructure, and viscoelastic behavior of flexible polyurethane/CNT nanocomposite foam", European Polymer Journal, 2017, Vol.90, pp.383-391.
[21] Bandarian, Maryam, Akbar Shojaei, and Ali Morad Rashidi, "Thermal, mechanical and acoustic damping properties of flexible open‐cell polyurethane/multi‐walled carbon nanotube foams: effect of surface functionality of nanotubes", Polymer International, 2011, Vol.60, no.3, pp.475-482.
[22] Asadi Khanouki, Mostafa, and Abdolreza Ohadi, "Improved acoustic damping in polyurethane foams by the inclusion of silicon dioxide nanoparticles", Advances in Polymer Technology, 2018, Vol.37, no.8, pp.2799-2810.
[23] Basirjafari, Sedigheh, Rasoul Malekfar, and Siamak Esmaielzadeh Khadem, "Low loading of carbon nanotubes to enhance acoustical properties of poly (ether) urethane foams", Journal of Applied Physics, 2012, Vol.112, no.10, pp.104312.
[24] Bahrambeygi, Hossein, Niloufar Sabetzadeh, Amir Rabbi, Komeil Nasouri, Ahmad Mousavi Shoushtari, and Mohammad Reza Babaei, "Nanofibers (PU and PAN) and nanoparticles (Nanoclay and MWNTs) simultaneous effects on polyurethane foam sound absorption", Journal of Polymer Research, 2013, Vol.20, no.2, pp.1-10.
[25] Baferani, A. Hasani, R. Keshavarz, M. Asadi, and A. R. Ohadi, "Effects of Silicone Surfactant on the Properties of Open‐Cell Flexible Polyurethane Foams", Advances in Polymer Technology, 2018, Vol.37, no.1, pp.71-83.
[26] بافرانی، ا.ح.، "مطالعه تجربی و مدلسازی رفتار آکوستیکی فومهای پلییورتان نانوکامپوزیتی دارای نانولولههای کربنی"، رساله دکتری، دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، 1395.