بررسی تحلیلی و عددی اثر اختلاف فشار و تغییر شاخص رفتار در میراگرهای مغناطیسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه جامع امام حسین (ع)

2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران

چکیده

در این مقاله به بررسی رفتار سیال مگنتورئولوژیکال[i] (MR) میراگرهای مغناطیسی[ii] با تأکید براثر اختلاف فشار و تغییر شاخص رفتار جریان (n) پرداخته شده است. ابتدا به روش تحلیلی و با استفاده از مدل هرشل باکلی و تقریب صفحات موازی، معادلات حاکم بر رفتار رئولوژیکی سیال MR استخراج و از مدل پلاستیک بینگهام در n=1 برای تنش برشی استفاده شد. در ادامه با مدل‌سازی عددی مسئله به‌صورت سیال گذرا بین دو استوانه هم‌مرکز و اعتبارسنجی آن، پارامترهای سرعت متوسط خروجی، اصطکاک سطح داخلی دیواره و لزجت[iii] ظاهری در اختلاف فشارهای ثابت و متغیر مورد بررسی قرار گرفت. نتایج نشان داد که با افزایش عدد شاخص جریان (n) در اختلاف فشار ثابت، سرعت خروجی کاهش می‌یابد و افزایش اختلاف فشار منجر به افزایش سرعت در نقاط مختلف قسمت خروجی می‌گردد. همچنین ضریب اصطکاک دیواره در اختلاف فشار ثابت با افزایش n در تمام نواحی افزایش می‌یابد و با افزایش اختلاف فشار، مقدار ضریب اصطکاک نیز افزایش می‌یابد. بررسی لزجت با تغییر n در اختلاف فشار ثابت و همچنین تغییر آن با تغییر اختلاف فشار نشان‌دهنده رفتار کاهشی است.



[i]. Magneto-Rheological


[ii]. Magnetic Damper


[iii]. Viscosity

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analytical and numerical study of the effect of pressure difference and variation of flow behavior index on rheological behavior of MR fluid in magnetic dampers

نویسندگان [English]

  • Mohammad Reza Elhami 1
  • Mohammad Reza Najafi 2
1 Mechanical Engineering Department, Imam Hossein comprehensive University, Tehran, Iran
2 Mechanical Engineering Department, Imam Hossein comprehensive University
چکیده [English]

در این مقاله به بررسی رفتار سیال مگنتورئولوژیکال (MR) دمپرهای مغناطیسی با تاکید بر اثر اختلاف فشار و تغییر شاخص رفتار جریان (n) پرداخته شده است. ابتدا به روش تحلیلی و با استفاده از مدل هرشل باکلی و تقریب صفحات موازی، معادلات حاکم بر رفتار رئولوژیکی سیال MR استخراج و از مدل پلاستیک بینگهام در n=1 برای تنش برشی استفاده شد. در ادامه با مدلسازی عددی مسئله بصورت سیال گذرا بین دو استوانه هم مرکز و اعتبار سنجی آن، پارامترهای سرعت متوسط خروجی، اصطکاک سطح داخلی دیواره و لزجت ظاهری در اختلاف فشارهای ثابت و متغیر مورد بررسی قرار گرفت. نتایج نشان داد که با افزایش عدد شاخص جریان (n) در اختلاف فشار ثابت، سرعت خروجی کاهش می‌یابد و افزایش اختلاف فشار منجر به افزایش سرعت در نقاط مختلف قسمت خروجی می‌گردد. همچنین ضریب اصطکاک دیواره در اختلاف فشار ثابت با افزایش n در تمام نواحی افزایش می یابد و با افزایش اختلاف فشار، مقدار ضریب اصطکاک نیز افزایش می‌یابد. بررسی لزجت با تغییر n در اختلاف فشار ثابت و هم‌چنین تغییر آن با تغییر اختلاف فشار نشان دهنده رفتار کاهشی است.

کلیدواژه‌ها [English]

  • Magneto rheological fluid
  • pressure difference
  • magnetic damper
  • variation of flow behavior index
 
[1]   Alavi, M.A., Sobhnamayan, F., “Analysis, Application and Stating Governing Equations of Smart Fluids”, 19th Annual Conference on Mechanical Engineering-ISME2011, 10-12 May, The University of Birjand, Birjand, Iran, 2011.
[2]   Frank, M., "White," Fluid Mechanics", McGraw Hill., 8th ed., 2015.
[3]   Bird, R. Byron., Warren e.,"Stewart, Edwin N. Lightfoot, Transport Phenomen”, John Wiley & son, New York, 1960.
[4]   Chhabra, Raj P., and John Francis Richardson, “Non-Newtonian flow in the process industries: fundamentals and engineering applications”, Butterworth-Heinemann, 1999.
[5]   Malkin, Alexander, and Alexander Y. Malkin, “Rheology fundamentals”, ChemTec publishing, 1994.
[6]   Baranwal, Deepak, and T. S. Deshmukh. "MR-fluid technology and its application-a review", International Journal of Emerging Technology and Advanced Engineering, 2012, Vol.2, no.12, pp.563-569.
[7]   Ahmadian, Mehdi, and James A. Norris, "Experimental analysis of magnetorheological dampers when subjected to impact and shock loading", Communications in Nonlinear Science and Numerical Simulation, 2008, Vol.13, no.9, pp.1978-1985.
[8]   Mikułowski, G., "Adaptive impact absorbers based on magnetorheological fluids", IPPT PAN, 2008.
[9]   Zhang, Xianzhou, Weihua Li, and X. L. Gong, "Study on magnetorheological shear thickening fluid", Smart materials and structures, 2008, Vol.17, no.1, p.015051.
[10]           Bossis, Georges, A. Ciffreo, Yann Grasselli, and Olga Volkova, "Discontinuous shear thickening in magnetorheological suspensions", In 27th Nordic Rheology Conference" Rheology for a better world", 2018, Vol.26, pp87-91.
[11]           Peng, Gangrou, "Novel shear thickening and magnetorheological materials and their application in controllable electrolytes." 2016.
[12]           Bossis, G., Y. Grasselli, A. Meunier, and O. Volkova, "Tunable discontinuous shear thickening with MR suspensions", In 15th International Conference on Electrorheological fluids and Magnetorheological suspensions, 2016.
[13]           Lindler, Jason E., Glen A. Dimock, and Norman M. Wereley, "Design of a magnetorheological automotive shock absorber", In Smart Structures and Materials 2000: Smart Structures and Integrated Systems, 2000, Vol.3985, pp.426-437. International Society for Optics and Photonics.
[14]           Liu, Xin-yun, Da-lin Wu, and Jian Hou, "Design and analysis of a scheme for the naval gun test shell entering the bore", Defence Technology, 2020.
[15]           Poynor, James Conner, "Innovative designs for magneto-rheological dampers", PhD diss., Virginia Tech, 2001.
[16]           Calarasu, D., C. Cotae, and R. Olaru, "Magnetic fluid brake", Journal of Magnetism and Magnetic Materials, 1999, Vol.201, no.1-3, pp.401-403.
[17]           Karakoc, Kerem, Edward J. Park, and Afzal Suleman, "Design considerations for an automotive magnetorheological brake", Mechatronics, 2008, Vol.18, no.8, pp.434-447.
[18]           Huang, Jin, J. Q. Zhang, Yan Yang, and Y. Q. Wei, "Analysis and design of a cylindrical magneto-rheological fluid brake", Journal of Materials Processing Technology, 2002, Vol.129, no.1-3, pp.559-562.
[19]           Bucchi, Francesco, Paola Forte, Francesco Frendo, and R. Squarcini, "A magnetorheological clutch for efficient automotive auxiliary device actuation", Frattura Ed Integrità Strutturale, 2013, Vol.7, no.23, pp.62-74.
[20]           Wessling, Lisa, "Physical modeling of a clutch for heavy vehicles", 2011.
[21]           B. Kavlicoglu, F. Gordaninejad, Y. Liu, X. Wang, and N. Cobanoglu, “Magneto rheological Fluid Limited Slip Differential Clutch”, Composite and Intelligent Materials Laboratory, Nevada, 2006.
[22]           Giuclea, M., Sireteanu, T., Stancioiu, D. and Stammers, C.W., “Modelling of magnetorheological damper dynamic behaviour by genetic algorithms based inverse method”. Proc. R. Acad. Series A, 2004, Vol.5, no.1, p.5563.
[23]           Spencer Jr, BrnF, S. J. Dyke, M. K. Sain, and JDf Carlson, "Phenomenological model for magnetorheological dampers", Journal of engineering mechanics, 1997, Vol.123, no.3, pp. 230-238.
[24]           Guðmundsson, Ketill Heiðar, "Design of a magnetorheological fluid for an MR prosthetic knee actuator with an optimal geometry", 2011.
[25]           Carlson, J. David, Wilfried Matthis, and James R. Toscano, "Smart prosthetics based on magnetorheological fluids", In Smart structures and materials 2001: industrial and commercial applications of smart structures technologies, 2001, Vol.4332, pp. 308-316.,  International Society for Optics and Photonics.
[26]           Kim, Do Kyung, Maria Mikhaylova, Fu Hua Wang, Jan Kehr, Börje Bjelke, Yu Zhang, Thomas Tsakalakos, and Mamoun Muhammed, "Starch-coated superparamagnetic nanoparticles as MR contrast agents", Chemistry of Materials, 2003, Vol.15, no.23, pp.4343-4351.
[27]           Hong, R. Y., B. Feng, L. L. Chen, G. H. Liu, H. Z. Li, Y. Zheng, and D. G. Wei, "Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles", Biochemical Engineering Journal, 2008, Vol.42, no.3, pp.290-300.
[28]           Chertok, Beata, Bradford A. Moffat, Allan E. David, Faquan Yu, Christian Bergemann, Brian D. Ross, and Victor C. Yang, "Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors", Biomaterials, Vol.29, no.4, pp.487-496.
[29]           Hiergeist, R., W. Andrä, N. Buske, R. Hergt, I. Hilger, U. Richter, and W. Kaiser, "Application of magnetite ferrofluids for hyperthermia", Journal of magnetism and Magnetic Materials, 1999, Vol.201, no.1-3, pp.420-422.
[30]           Ban, Shuai, and Vladislav Korenivski, "Pattern storage and recognition using ferrofluids", Journal of applied physics, 2006, Vol.99, no.8, p.08R907.
[31]           Vander Wal, Randall L., and Thomas M. Ticich, "Comparative flame and furnace synthesis of single-walled carbon nanotubes", Chemical Physics Letters, 2001, Vol.336, no.1-2, pp.24-32.
[32]           Raj, Kuldip, B. Moskowitz, and R. Casciari, "Advances in ferrofluid technology", Journal of magnetism and magnetic materials, 1995, Vol.149, no.1-2, pp.174-180.
[33]           Yang, Gary, B. F. Spencer Jr, J. D. Carlson, and M. K. Sain, "Large-scale MR fluid dampers: modeling and dynamic performance considerations", Engineering structures, 2002, Vol.24, no.3, pp.309-323.
[34]           Kim, Jeong-Hoon, Chong-Won Lee, Byung-Bo Jung, Youngjin Park, and Guangzhong Cao, "Design of magneto-rheological fluid based device", KSME international journal, 2001, Vol.15, no.11, pp.1517-1523.
[35]           Jolly, Mark R., Jonathan W. Bender, and J. David Carlson, "Properties and applications of commercial magnetorheological fluids", Journal of intelligent material systems and structures, 1999, Vol.10, no.1, pp.5-13.
[36]           Stephen, Papell Solomon, "Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles." U.S. Patent 3,215,572, issued November 2, 1965.
[37]           Phillips, Robert William, "Engineering applications of fluids with a variable yield stress", PhD diss., University of California, Berkeley, 1969.
[38]           Wang, J. Y., Y. Q. Ni, J. M. Ko, and B. F. Spencer Jr., "Magneto-rheological tuned liquid column dampers (MR-TLCDs) for vibration mitigation of tall buildings: modelling and analysis of open-loop control", Computers & structures, 2005, Vol.83, no.25-26 pp.2023-2034.
[39]           Wang, Xiaojie, and Faramarz Gordaninejad, "Field-controllable electro-and magneto-rheological fluid dampers in flow mode using Herschel-Bulkley theory", In Smart Structures and Materials 2000: Damping and Isolation, 2000, Vol.3989, pp.232-243. International Society for Optics and Photonics.
[40]           Chooi, Weng W., and S. Olutunde Oyadiji, "Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions", Computers & structures, 2008, Vol.86, no.3-5, pp.473-482.
[41]           Awrejcewicz, Jan, and Larisa P. Dzyubak, "Hysteresis simulation and investigation of the control parameter planes", In Proc. Fifth EUROMECH Nonlinear Dynamics Conference, 2005.
[42]           Ji, Han-Rok, Yeong-Jong Moon, Chun-Ho Kim, and In-Won Lee, "Structural vibration control using semiactive tuned mass damper", In The Eighteenth KKCNN Symposium on Civil Engineering-KAIST6, 2005, pp.18-20.
[43]           Kwok, N. M., Q. P. Ha, J. Li, B. Samali, and S. M. Hong, "Parameter identification for a magnetorheological fluid damper: an evolutionary computation approach", In Proc. Sixth Intl. Conf. on Intelligent Technologies, 2005, pp. 115-122.
[44]           Dyke SJ, Spencer Jr, BF, Sain MK, Carlson JD, “On the efficacy of magnetorheological dampers for seismic response reduction”, In: Proceedings of the ASME 16th Biennial Conference on Mechanical Vibration and Noise, Paper No. DETC97VIB3828, 1997, 10 p.
[45]           Spencer Jr, BrnF, S. J. Dyke, M. K. Sain, and JDf Carlson, "Phenomenological model for magnetorheological dampers", Journal of engineering mechanics, 1997, Vol.123, no.3, pp.230-238.
[46]           Dyke, S. J., B. F. Spencer Jr, M. K. Sain, and J. D. Carlson, "Modeling and control of magnetorheological dampers for seismic response reduction", Smart materials and structures, 1996, Vol.5, no.5, p.565.
[47]           Parlak, Zekeriya, Tahsin Engin, and İsmail Çallı, "Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field", Mechatronics, 2012, Vol.22, no.6, pp.890-903.
[48]           Kamath, Gopalakrishna M., Melanie K. Hurt, and Norman M. Wereley, "Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers", Smart Materials and Structures, 1996, Vol.5, no.5 p.576.
[49]           Yoo, Jin-Hyeong, and Norman M. Wereley, "Quasi-steady axisymmetric Bingham-plastic model of magnetorheological flow damper behavior", In ASME International Mechanical Engineering Congress and Exposition, 2005, Vol.4210, pp.375-380.
[50]           Yoo, Jin-Hyeong, and Norman M. Wereley, "Nondimensional analysis of annular duct flow in magnetorheological/electrorheological dampers", International Journal of Modern Physics B, 2005,Vol.19, no.07n09, pp.1577-1583.
[51]           Wang, D. H., H. X. Ai, and W. H. Liao, "A magnetorheological valve with both annular and radial fluid flow resistance gaps," Smart materials and structures, 2009, Vol.18, no.11, p.115001.
[52]           Hong, S. R., S. B. Choi, Y. T. Choi, and N. M. Wereley, "Non-dimensional analysis and design of a magnetorheological damper", Journal of Sound and Vibration, 2005, Vol.288, no.4-5, pp.847-863.
[53]           Hong, S. R., N. M. Wereley, Y. T. Choi, and S. B. Choi, "Analytical and experimental validation of a nondimensional Bingham model for mixed-mode magnetorheological dampers", Journal of Sound and Vibration, 2008, Vol.312, no.3, pp.399-417.
[54]           Zolfagharian, Mohammad Mehdi, Mohammad Hassan Kayhani, and Mahmood Norouzi, "Manufacturing and testing of an optimized Magneto-Rheological (MR) fluid and modelling of a Twin tube MR damper using a modified non-Newtonian model using analytical quasi-static, analytical unsteady, numerical and experimental methods", Amirkabir Journal of Mechanical Engineering, 2019.
[55]           Zolfagharian, Mohammad Mehdi, Mohammad Hassan Kayhani, Mahmood Norouzi, and Amir Jalali, "Parametric investigation of twin tube magnetorheological dampers using a new unsteady theoretical analysis", Journal of Intelligent Material Systems and Structures, 2019, Vol.30, no.6, pp.878-895.
[56]           Ahamed, Raju, Md Meftahul Ferdaus, and Yancheng Li, "Advancement in energy harvesting magneto-rheological fluid damper: A review", Korea-Australia Rheology Journal, 2016, Vol.28, no.4, pp.355-379.
[57]           Wereley, Norman M., and Li Pang, "Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models", smart materials and structures, 1998, Vol.7, no.5, p.732.
[58]           Wahid, S. A., I. Ismail, S. Aid, and M. S. A. Rahim, "Magneto-rheological defects and failures: A review", In IOP Conference Series: Materials Science and Engineering, 2016, Vol.114, no.1, p.012101, IOP Publishing, 2016.
[59]           Batchelor, George K., "An Introduction to Fluid Dynamics", Cambridge,1967, UP xviii 615.
[60]           Tanner, R. I., "Engineering Rheology”, Clarendon Press, Oxford, 1988.
[61]           Çeşmeci, Şevki, and Tahsin Engin., "Modeling and testing of a field-controllable magnetorheological fluid damper", International Journal of Mechanical Sciences, 2010, Vol.52, no.8, pp.1036-1046.
[62]            Chooi, Weng Wai, "Experimental characterisation of the properties of magnetorheological (MR) fluids and MR damper", PhD diss., The University of Manchester, 2005.