طراحی و تحلیل یک نانو زیست حسگر ارتعاشی بر پایه نانولوله‌ کربنی برای تشخیص ویروس‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه پیام نور، صندوق پستی 3697-19395 تهران، ایران

2 دانشکده مهندسی مککانیک، دانشگاه آزاد اسلامی واحد نجف آباد، اصفهان، ایران

چکیده

در این پژوهش، یک مدل نظری بر اساس معادلات تیر اویلر-برنولی[i] اصلاح شده‌ی ناموضعی برای تشخیص ذرات بیولوژیکی جذب شده بر روی نانولوله‌های کربنی دو سر گیردار به عنوان یک نانو زیست حسگر ارتعاشی ارائه شده است. اساس کار این نانو زیست حسگرهای ارتعاشی، محاسبه دقیق تغییر فرکانس تشدید به دلیل تغییر جرم ناشی از جذب سطحی ویروس‌ها است. در بیشتر تحقیق‌های انجام شده برای سادگی محاسبات از تکیه‌گاه‌های دوسر مفصلی استفاده کرده‌اند، درحالی‌که ساخت چنین تکیه‌گاه‌هایی در مقیاس نانو تقریبا غیرممکن است. به این منظور از تکیه‌گاه‌ دو سر گیردار برای تحلیل این مسأله استفاده شده است و برای نخستین بار، پاسخ بسته فرکانس ارتعاشی یک نانوحسگر دوسر گیردار بر حسب مشخصات هندسی و مکانیکی نانولوله به همراه اثرهای ناموضعی، سطحی و اینرسی دورانی، ارائه گردید. اگرچه بسیاری از محققان از اثرهای تنش سطحی و اینرسی چرخشی به‌طور هم‌زمان در تحلیل ناموضعی ارتعاشی نانوحسگر چشم‌پوشی کرده‌اند، اما این پژوهش نشان می‌دهد که اثرهای مذکور در مقیاس‌ نانو، نقش زیادی در تغییر فرکانس تشدید و دقت نانو زیست حسگرهای ارتعاشی داشته‌اند. همچنین بر پایه پاسخ به‌دست آمده، شش نوع ویروس متفاوت مورد بررسی قرار گرفت که براساس آنالیز حساسیت، نانو زیست حسگر طراحی شده موفق به تفکیک تغییر فرکانس و در نتیجه تشخیص آنها شد.



[i]. Euler-Bernoulli beam

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and analysis of a resonant nano-bio-sensor based on carbon nanotubes to detect viruses

نویسندگان [English]

  • Reza Hosseini-Ara 1
  • Mohsen Hadi 2
1 Department of Mechanical Engineering, Payame Noor University, P. O. Box 19395-3697 Tehran, Iran
2 Department of Mechanical engineering, Islamic Azad University, Najaf Abad branch, Isfahan, Iran
چکیده [English]

In this study, a theoretical model based on the modified nonlocal Euler-Bernoulli is presented for the detection of biologically adsorbed particles on doubly clamped carbon nanotubes as resonant nano-bio-sensors. The basis of the work of these resonant nano-bio-sensors is the accurate calculation of the change in the resonant frequency because of the change in the mass due to the surface adsorption of the viruses. In most studies, simply supported ends have been used for simplicity of calculations, while it is almost impossible to build such supports at nano-scale. For this purpose, a doubly clamped ends was used to analyze this problem and for the first time, the closed-form vibration frequency response of a doubly clamped nano-sensor was presented according to the geometric and mechanical characteristics of the nanotubes along with nonlocal, surface and rotary inertia effects. Although many researchers have ignored the effects of surface stress and rotary inertia on the vibration analysis of nano-sensors, this study found that these effects at nano-scale played a major role in changing the frequency and accuracy of resonant nano-bio-sensors. Also, based on the obtained results, six different types of viruses were examined. Based on the sensitivity analysis, the designed nano-bio-sensor was able to separate the frequency change and identify them, consequently.

کلیدواژه‌ها [English]

  • Carbon nanotubes
  • Resonant nano-bio-sensor
  • Nonlocal effect
  • Surface stresses
  • Rotary inertia
[1] Burg, Thomas P., and Scott R. Manalis,"Suspended microchannel resonators for biomolecular detection", Applied Physics Letters, 2003, Vol.83, no.13, pp.2698-2700.
[2] Faria HA, Zucolotto V., “Label-free electrochemical DNA biosensor for zika virus identification”, Biosensors and Bioelectronics, 2019, Vol.131, pp.149-55.
[3] Hosseini-Ara, Reza, Amir Hossein Karamrezaei, and Ali Mokhtarian, "Exact analysis of antibody-coated silicon biological nano-sensors (SBNSs) to identify viruses and bacteria", Microsystem Technologies, 2020, Vol.26, no.2, pp.509-516.
[4] حسینی‌آراء ر، کرمرضایی ا، مختاریان ع،  "تحلیل و بررسی اثر پوشش کامل لایه جاذب میوسین بر ارتعاشات نانوزیستحسگرهای سیلیکونی به منظور شناسایی عوامل بیماری‌زا"، مجله مهندسی پزشکی زیستی، 1397، دوره 12، شماره 1، صفحه 41-49.
[5] Khanna, Vinod Kumar, "Nanosensors: physical, chemical, and biological", CRC Press, 2011.
[6] Ozer, Tugba, Brian J. Geiss, and Charles S. Henry, "Chemical and Biological Sensors for Viral Detection", Journal of the Electrochemical Society, 2019, Vol.167, no.3, p.037523.
[7] Iijima, S., “Helical micro tubes of graphitic carbon”, Nature, 1991, 354, pp.56-58.
[8] Amirian, B., R. Hosseini-Ara, and H. Moosavi, "Thermal vibration analysis of carbon nanotubes embedded in two-parameter elastic foundation based on nonlocal Timoshenko's beam theory", Archives of Mechanics, 2013, Vol.64, no.6,pp.581-602.
[9] Lu, Pin, H. P. Lee, C. Lu, and P. Q. Zhang, "Dynamic properties of flexural beams using a nonlocal elasticity model", Journal of applied physics, 2006, Vol.99, no.7,p.073510.
[10] Lu, Pin, H. P. Lee, C. Lu, and P. Q. Zhang, "Application of nonlocal beam models for carbon nanotubes", International Journal of Solids and Structures, 2007, Vol.44, no.16, pp.5289-5300.
[11] Lee, H., and Chang, W., "Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory", Journal of Applied Physics, 2010, Vol.108, no.9, p.093503.
[12] Ansari, R., and S. Sahmani, "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", International Journal of Engineering Science, 2011, Vol.49, no.11, pp.1244-1255.
[13] Wang, C. M., V. B. C. Tan, and Y. Y. Zhang, "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", Journal of Sound and Vibration 2006, Vol.294, no.4-5, pp.1060-1072.
[14] Elishakoff, Isaac, and Demetris Pentaras, "Natural frequencies of carbon nanotubes based on simplified Bresse-Timoshenko theory", Journal of Computational and Theoretical Nanoscience, 2009, Vol.6, no.7, pp.1527-1531.
[15] Behrouz, Saman Jabbari, Omid Rahmani, and S. Amirhossein Hosseini, "On nonlinear forced vibration of nano cantilever-based biosensor via couple stress theory", Mechanical Systems and Signal Processing, 2019, Vol.128, pp.19-36.
[16] Mahmoodi, S. Nima, Mana Afshari, and Nader Jalili, "Nonlinear vibrations of piezoelectric microcantilevers for biologically-induced surface stress sensing", Communications in Nonlinear Science and Numerical Simulation, 2008, Vol.13, no.9,pp.1964-1977.
[17] Eringen, A. Cemal, "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", Journal of applied physics, 1983, Vol.54, no.9, pp.4703-4710.
[18] Amirian, B., R. Hosseini-Ara, and H. Moosavi, "Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model", Applied Mathematics and Mechanics, 2014, Vol.35, no.7,pp.875-886.
[19] Reddy, J. N., "Nonlocal theories for bending, buckling and vibration of beams", International journal of engineering science, 2007, Vol.45, no.2-8, pp.288-307.
[20] Elishakoff, Isaac, Noël Challamel, Clément Soret, Yannis Bekel, and Thomas Gomez, "Virus sensor based on single-walled carbon nanotube: improved theory incorporating surface effects", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, Vol.371, no.1993, pp.20120424.