مطالعه عددی اثرات حرکات کشتی بر روی مشخصه‌های استاتیکی و ارتعاشی دکل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 Department of Ocean Engineering, Amirkabir University of Technology, Tehran, Iran.

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran.

چکیده

مطالعه استاتیکی به همراه ارتعاشی دکل یک شناور سطحی در این مقاله مورد بررسی قرار گرفته است. طراحی دکل مخابراتی یک کشتی از نقطه نظر سازه­ای جهت نصب انواع آنتن­ها و رادارهای مورد نیاز، از مهم­ترین موضوعات در طراحی یک کشتی به حساب می­آید. ازهمین‌رو، در تحلیل انجام شده دکل مخابراتی به همراه عرشه کشتی مدل شده است. بعد از بررسی دکل و عرشه در حالت استاتیک و محاسبه تغییر شکل­ها و تنش­ها، با توجه به حرکات کشتی در دریا، نیروهای ناشی از آن به تحلیل اضافه شده و اثرات حاصل شده بر روی تنش­ها و جابه‌جایی­های دکل برآورد شده است. لازم به ذکر است که در این تحلیل شتاب­های خطی به صورت نیروی گرانش، شتاب­های دورانی به صورت نیروی حجمی دورانی به سازه دکل و وزن رادار به صورت نیروی متمرکز بر آن اعمال گشته­اند. پس از آن، تحلیل فرکانسی انجام و مودهای مختلف نوسان سازه دکل استخراج گردیده است. نتایج نشان می­دهد که در طراحی دکل­ها، علاوه‌بر درنظر گرفتن پارامترهای طراحی خود دکل (نظیر شرایط مرزی، بار اعمالی، نحوه قرارگیری اعضا)، مکان مورد استفاده آنها نیز باید مورد توجه قرار گیرد. استفاده از دکل­ها در عرشه شناورها موجب شد که فاکتور ایمنی به طرز چشمگیری کاهش یابد. همچنین، شاهد پدیده­های مختلفی همچون خستگی در اعضا به ویژه محل اتصال به عرشه باشیم که می­تواند در دراز مدت آثار بسیار مخربی داشته باشد و باعث کاهش طول عمر سازه گردد. بنابراین، در طراحی دکل­های سازه­های شناور دریایی، باید فاکتورهای ایمنی بیشتری منظور و به‌طور ویژه­ای به حرکات جانبی شناور اهمیت داده شود.

کلیدواژه‌ها


عنوان مقاله [English]

A numerical study of ship motions effects on the static and vibration characteristics of the tower

نویسندگان [English]

  • Hamidreza Rostami 1
  • Vahdat Pirouzram 2
  • Firooz Bakhtiari-Nejad 3
  • Javad Orooji 1
1 Department of Ocean Engineering, Amirkabir University of Technology, Tehran, Iran.
2 Department of Mechanical Engineering, Malek-Ashtar University of Technology, Tehran, Iran
3 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran.
چکیده [English]

The static and vibration studies of a tower of a surface float is investigated in this paper. Designing a ship's telecommunication tower is one of the most important issues in designing the ship from the structural point of view to install the required types of antennas and radars. Therefore, in the analysis, the telecommunication tower and the deck of the ship are modeled. After examining the static state and calculating deformations and stresses, according to the ship's movements, the resulting forces are added to the analysis and the effects on the stresses and displacements are obtained. It should be noted that in this analysis, accelerations as gravitational force, rotational accelerations as rotational volume forces, and also radar weight as a concentrated force are applied to the structure. Next, frequency analysis is performed and different structural modes are extracted. The results show that in the design process, in addition to considering the parameters of tower design (such as boundary conditions, operating load, places of members), their location of using should also be considered. The use of towers on the deck of the vessels significantly reduced the safety factor. Also, it can be observed various phenomena such as fatigue in the limbs, especially the connection place to the deck, which can have very destructive effects in the long run and reduce the life of the structure. Therefore, in designing the towers of floating structures, more safety factors should be considered and special attention should be paid to the movements of the vessel.

کلیدواژه‌ها [English]

  • Tower
  • Telecommunication tower
  • Ship motions
  • Static analysis
  • Vibration analysis
[1] Courant, Richard, "Variational methods for the solution of problems of equilibrium and vibrations," Lecture notes in pure and applied mathematics, 1994, p.1-1.
[2] Kai, Cheung Yau, and Olgierd Cecil Zienkiewicz, "The finite element method in structural and continuum mechanics, numerical solution of problems in structural and continuum mechanics", 1967.
[3] Przemieniecki, J. S., "Theory of Matrix Structural Analysis 11”, McGraw-Hill Book Co., New York,1968, p.21.
[4] Robaldo, A., "Finite element analysis of the influence of temperature profile on thermoelasticity of multilayered plates", Computers & structures, 2006, Vol.84, no.19-20, pp.1236-1246.
[5] Murín, Justín, Vladimír Kutiš, Viktor Královič, and Tibor Sedlár, "3D beam finite element including nonuniform torsion", Procedia Engineering, 2012, Vol.48, pp.436-444.
[6] Kumar, YV Satish, and M. Mukhopadhyay, "Finite element analysis of ship structures using a new stiffened plate element", Applied Ocean Research, 2000, Vol.22, no.6, pp.361-374.
[7] Seweryn, Andrzej, "Modeling of singular stress fields using finite element method", International Journal of Solids and Structures, 2002, vol.39, no.18, pp.4787-4804.
[8] Öztorun, Namik Kemal, "A rectangular finite element formulation", Finite elements in analysis and design, 2006, Vol.42, no.12, pp.1031-1052.
[9] Necib, B., and C. T. Sun, "Analysis of truss beams using a high order Timoshenko beam finite element", Journal of sound and vibration, 1989, Vol.130, no.1, pp.149-159.
[10] Girard, A., and H. Defosse, "Frequency response smoothing and structural path analysis: application to beam trusses", Journal of sound and vibration, 1993, Vol.165, no.1, pp.165-170.
[11] Gao, Wei, "Interval natural frequency and mode shape analysis for truss structures with interval parameters", Finite Elements in Analysis and Design, 2006, Vol.42, no.6, pp.471-477.
[12] Greco, M., F. A. R. Gesualdo, W. S. Venturini, and H. B. Coda, "Nonlinear positional formulation for space truss analysis", Finite elements in analysis and design, 2006, Vol.42, no.12, pp.1079-1086.
[13] Kurian, V. J., B. S. Wong, and O. A. A. Montasir, "Frequency domain analysis of truss spar platform", environment (Chakrabarti, 2005; Downie et al.; Sadeghi et al.; Wang et al., 2001, 2002,) 2008, Vol.5, no.7, pp.11-13.
[14] X. Guo, W. Bai, W. Zhang, “Confidence extremal structural response analysis of truss structures under static load uncertainty via SDP relaxation”, Computers & Structures, 2009, Vol.87, pp.246–253.
[15] Lou, Jia, Li Ma, and Lin-Zhi Wu, "Free vibration analysis of simply supported sandwich beams with lattice truss core", Materials science and engineering: B, 2012, Vol.177, no.19, pp.1712-1716.
[16] Pham, Ngoc Vinh, Takeshi Miyashita, Kazuo Ohgaki, Yusuke Okuyama, Akira Kobayashi, Yuya Hidekuma, Takeshi Hirose, and Takuya Harada, "Analytical Study on Remaining Capacity of Corroded Gusset Plate Connection in Truss Bridges", Journal of JSCE, 2018, Vol.6, no.1, pp.127-146.