مروری بر استفاده از امواج فراصوت در تصفیه پساب های کشاورزی

نوع مقاله: مقاله ترویجی

نویسندگان

1 دانشگاه صنعتی نوشیروانی بابل

2 گروه ترموسینتیک، دانشکده مهندسی شیمی، دانشگاه صنعتی نوشیروانی بابل

3 دانشگاه صنعتی نوشیروانی بابل، دانشکده مهندسی شیمی

چکیده

هدف اصلی این مطالعه مروری بر تحقیقات انجام شده در زمینه کاربرد امواج فراصوت در زمینه حذف سموم از پساب های کشاورزی می باشد. در سالهای اخیر و به طور خاص در دهه اخیر امواج فراصوت در زمینه های مختلفی به کار رفته است و همچنان کاربردهای جدیدی برای پدیده حباب زایی فراصوتی در حال کشف می باشد. دما و فشار ایجاد شده پس از ترکیدن حباب های ایجاد شده توسط امواج فراصوت به حدی برای دانشمندان جذاب و حتی عجیب بوده است که کاربردهای آن از نظر حوزه حد و مرزی نمی شناسد و در علوم مختلف به کار می رود. در ابتدای این مطالعه به طور خلاصه به مرور برخی از کاربردهای امواج فراصوت در تصفیه آب پرداخته شده است و در ادامه مطالعات انجام شده در زمینه حذف سموم به کمک این امواج به طور دقیق تر مورد بررسی قرار گرفته است. آبکافت مولکول های آب به یون های هیدروژن و هیدروکسید توسط امواج فراصوت زمینه را برای واکنش های بعدی آماده می کند. استفاده از اکسیدکننده های مختلف نظیر هیدروژن پراکسید و فنتون به منظور حذف مولکولهای سموم کشاورزی از آب بارها مورد مطالعه قرار گرفته است. مطالعات مرور شده در این تحقیق به وضوح نشان دادند که استفاده از امواج فراصوت نه تنها باعث سرعت بخشیدن به فرآیند حذف سموم می شود، بلکه از سوی دیگر مقدرا اکسید کننده را تا حد قابل توجهی کاهش می دهد.

کلیدواژه‌ها


[1] Shannon, M.A., P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, and A.M. Mayes, “Science and technology for water purification in the coming decades”. Nature, 2008, 452(7185), pp.301-311.

[2] Ahmad A, Mohd-Setapar SH, Chuong CS, Khatoon A, Wani WA, Kumar R., Rafatullah M., “Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater”. RSC Advances, 2015, Vol.5, no.39, pp.30801-18.

[3] Wang C, Shih Y., “Degradation and detoxification of diazinon by sono-Fenton and sono-Fenton-like processes”, Separation and purification technology, 2015, Vol.140, pp.6-12.

[4] Bailey HC, Krassoi R, Elphick JR, Mulhall AM, Hunt P, Tedmanson L, Lovell A., “Whole effluent toxicity of sewage treatment plants in the hawkesbury–nepean watershed, New South Wales, Australia, to Ceriodaphnia dubia and Selenastrum capricornutum”, Environmental Toxicology and Chemistry: An International Journal, 2000, Vol.19, no.1, pp.72-81.

[5] Amooey AA, Ghasemi S, Mirsoleimani-azizi SM, Gholaminezhad Z, Chaichi MJ. “Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes”, Korean Journal of Chemical Engineering, 2014, Vol.31, no.6, pp.1016-20.

[6] Matouq MA, Al-Anber ZA, Tagawa T, Aljbour S, Al-Shannag M., “Degradation of dissolved diazinon pesticide in water using the high frequency of ultrasound wave”, Ultrasonics Sonochemistry, 2008, Vol.15, no.5, pp.869-74.

[7] Mirsoleimani-azizi SM, Amooey AA, Ghasemi S, Salkhordeh-panbechouleh S., “Modeling the removal of endosulfan from aqueous solution by electrocoagulation process using artificial neural network (ANN)”, Industrial & Engineering Chemistry Research, 2015, Vol.54, no.40, pp.9844-9.

[8] Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, Ahmad A., “Removal of pesticides from water and wastewater by different adsorbents: a review”, Journal of Environmental Science and Health, Part C, 2010, Vol.28, no.4, pp.231-71.

[9] Gogate PR., “Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward”, Ultrasonics Sonochemistry, 2008, Vol.15. no.1, pp.1-5.

[10] Pang YL, Abdullah AZ, Bhatia S., “Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater”, Desalination. 2011, Vol.277, no.1-3, pp.1-4.

[11] Villaroel E, Silva-Agredo J, Petrier C, Taborda G, Torres-Palma RA., “Ultrasonic degradation of acetaminophen in water: effect of sonochemical parameters and water matrix”, Ultrasonics sonochemistry, 2014, Vol.21, no.5, pp.1763-9.

[12] Joseph CG, Puma GL, Bono A, Taufiq-Yap YH, Krishnaiah D., “Operating parameters and synergistic effects of combining ultrasound and ultraviolet irradiation in the degradation of 2, 4, 6-trichlorophenol”, Desalination, 2011, Vol.276, no.1-3, pp.303-9.

[13] Ma YS, Sung CF, Lin JG., “Degradation of carbofuran in aqueous solution by ultrasound and Fenton processes: effect of system parameters and kinetic study”, Journal of Hazardous Materials, 2010, Vol.178, no.1-3, pp.320-5.

[14] Dehghani MH, Mahvi AH, Jahed GR, Sheikhi R., “Investigation and evaluation of ultrasound reactor for reduction of fungi from sewage”, Journal of Zhejiang University Science B, 2007, Vol.8, no.7, pp.493-7.

[15] Veillet S, Tomao V, Chemat F., “Ultrasound assisted maceration: An original procedure for direct aromatisation of olive oil with basil” Food Chemistry, 2010, Vol.123, no.3, pp.905-11.

[16] Vajnhandl S, Le Marechal AM., “Ultrasound in textile dyeing and the decolouration/mineralization of textile dyes”, Dyes and Pigments, 2005, Vol.65, no.2, pp.89-101.

[17] Crum LA., “Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL”, The Journal of urology, 1988, Vol.140, no.6, pp.1587-90.

[18] Juang RS, Lin K.H., “Flux recovery in the ultrafiltration of suspended solutions with ultrasound”, Journal of Membrane Science, 2004, Vol.243, no.1-2, 115-24.

[19] Tarleton ES, Wakeman RJ., “Microfiltration enhancement by electrical and ultrasonic force fields”, Filtration & Separation, 1990, Vol.27, no.3, pp.192-4.

[20] Suslick KS, “Sonochemistry”, science, 1990, Vol.247, no.4949, pp.1439-45.

[21] Frenzel H, Schultes H., “Luminescenz im ultraschallbeschickten Wasser”, Zeitschrift für Physikalische Chemie, 1934, Vol.27, no.1, pp.421-4.

[22] Lamminen MO, Walker HW, Weavers LK., “Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes”, Journal of membrane science, 2004, Vol.237, no.1-2, pp.213-23.

[23] Kyllönen H, Pirkonen P, Nyström M, Nuortila-Jokinen J, Grönroos A., “Experimental aspects of ultrasonically enhanced cross-flow membrane filtration of industrial wastewater”, Ultrasonics sonochemistry, 2006, Vol.13, no.4, pp.295-302.

[24] Thangavadivel, K., M. Mallavarapu, A. Mudhoo, and R. Naidu, “Degradation of Organic Pollutants Using Ultrasound”, 2012, pp.447-474.

[25] Adewuyi YG., “Sonochemistry: environmental science and engineering applications”, Industrial & Engineering Chemistry Research, 2001, Vol.40, no.22, pp.4681-715.

[26] Peters D., “Ultrasound in materials chemistry”, Journal of materials chemistry, 1996, Vol.6, no.10, pp.1605-18.

[27] Dong Chen, Sanjay K. Sharma, Ackmez Mudhoo, “Handbook on Applications of Ultrasound: Sonochemistry for Sustainability”, CRC Press, 2011, p. 105-122.

[28] Suslick KS, Hammerton DA, Cline RE., “Sonochemical hot spot”, Journal of the American Chemical Society, 1986, Vol.108, no.18, pp.5641-2.

[29] Chen D, Weavers LK, Walker HW., “Ultrasonic control of ceramic membrane fouling: effect of particle characteristics”, Water research, 2006, Vol.40, no.4, pp.840-50.

[30] Doktycz SJ, Suslick KS., “Interparticle collisions driven by ultrasound” Science, 1990, Vol.247, no.4946, pp.1067-9.

[31] Prozorov T, Prozorov R, Suslick KS., “High velocity interparticle collisions driven by ultrasound”, Journal of the American Chemical Society, 2004, Vol.126, no.43, pp.13890-1.

[32] Vilkhu K, Mawson R, Simons L, Bates D., “Applications and opportunities for ultrasound assisted extraction in the food industry—A review”, Innovative Food Science & Emerging Technologies, 2008, Vol.9, no.2, pp.161-9.

[33] Chen D, Sharma SK, Mudhoo A., “Handbook on applications of ultrasound: sonochemistry for sustainability”, CRC press, 2011.

[34] Carnaroglio D, Gaudino EC, Mantegna S, Moreira EM, Vicente de Castro A, Flores EM, Cravotto G., “Ultrasound-assisted oxidative desulfurization/denitrification of liquid fuels with solid oxidants”, Energy & Fuels, 2014, Vol.28, no.3, pp.1854-9.

[35] Saien J, Daneshamoz S., “Experimental studies on the effect of ultrasonic waves on single drop liquid–liquid extraction”, Ultrasonics sonochemistry, 2018, Vol.40, pp.11-6.

[36] Oh JY, Choi SD, Kwon HO, Lee S.E., “Leaching of polycyclic aromatic hydrocarbons (PAHs) from industrial wastewater sludge by ultrasonic treatment”, Ultrasonics sonochemistry, 2016, Vol.33, pp.61-6.

[37] Peng C, Momen AM, Moghaddam S., “An energy-efficient method for direct-contact ultrasonic cloth drying”, Energy, 2017, Vol.138, pp.133-8.

[38] Mutiarani, I.M. and A. Trisnobudi, Ultrasonic Irradiation in Decreasing Water Turbidity. 2009.

[39] Stefan AN, Balan GE., “The Chemistry of the Raw Water Treated By Air-Jet Ultrasound Generator”, Rev. Roum. Sci. Tech.-Mec., 2011, Vol.56, no.1, pp.85-92.

[40] Chua SY., Effect of Ultrasonic Irradiation on Landfill Leachate (Doctoral dissertation, Universiti Putra Malaysia), 2011.

[41] Allen MB, Arnon DI., “Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm.”, Plant Physiology, 1955, Vol.30, no.4, p.366.

[42] Sayadi MH, Ghatnekar SD, Kavian MF., “Algae a promising alternative for biofuel”, Proceedings of the international academy of ecology and environmental sciences, 2011, Vol.1, no.2, p.112.

[43] Haarhoff J, Edzwald JK., “Dissolved air flotation modelling: insights and shortcomings”, Journal of Water Supply: Research and Technology-AQUA, 2004, Vol.53, no.3, pp.127-50.

[44] Kommineni S, “Water Research Foundation”, Strategies for controlling and mitigating algal growth within water treatment plants. Water Research Foundation, 2009.

[45] Lee TJ, Nakano K, Matsumura M., “A novel strategy for cyanobacterial bloom control by ultrasonic irradiation”, Water Science and Technology, 2002, Vol.46, no.6-7, pp.207-15.

[46] Mahvi AH, Dehghani MH., Evaluation of ultrasonic technology in removal of algae from surface waters”, Pakistan Journal of Biological Sciences, 2005, Vol.8, no.10, pp.1457-9.

[47] Tang J, Wu Q, Hao H, Chen Y, Wu M., “Growth inhibition of the cyanobacterium Spirulina (Arthrospira) platensis by 1.7 MHz ultrasonic irradiation”, Journal of applied phycology. 2003, Vol.15, no.1, pp.37-43.

[48] Yejing Q, Fei Y, Fei R, Hai L, Jiangping L, Wei W., “Degradation of Microcystins by UV in the Presence of Low Frequency and Power Ultrasonic Irradiation”, In2011 Third International Conference on Measuring Technology and Mechatronics Automation 2011 Jan 6. IEEE, Vol.1, pp. 831-834.

[49] Ma B, Chen Y, Hao H, Wu M, Wang B, Lv H, Zhang G., “Influence of ultrasonic field on microcystins produced by bloom-forming algae”, Colloids and Surfaces B: Biointerfaces, 2005, Vol.41, no.2-3, pp.197-201.

[50] Kabay N, Demircioglu M, Ersöz E, Kurucaovali I., “Removal of calcium and magnesium hardness by electrodialysis”, Desalination, 2002, Vol.149, no.1-3, pp.343-9.

[51] Yildiz E, Nuhoglu A, Keskinler B, Akay G, Farizoglu B., “Water softening in a crossflow membrane reactor”, Desalination, 2003, Vol.159, no.2, pp.139-52.

[52] Park JS, Song JH, Yeon KH, Moon SH., “Removal of hardness ions from tap water using electromembrane processes”, Desalination. 2007, Vol.202, no.1-3, pp.1-8.

[53] Entezari, M.H. and M. Tahmasbi, Water softening by combination of ultrasound and ion exchange. Ultrasonics sonochemistry, 2009. 16(3): p. 356-360.

[54] Handford CE, Elliott CT, Campbell K., “A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards”, Integrated environmental assessment and management, 2015, Vol.11, no.4, pp.525-36.

[55] FAO, d., National food safety standard-Maximum residue limits for pesticides in food, FAOSTAT, Editor. 2017: http://www.fao.org/faostat/en/#data/EP.

[56] Chen JY, Lin YJ, Kuo WC., “Pesticide residue removal from vegetables by ozonation”, Journal of Food Engineering, 2013, Vol.114, no.3, pp.404-11.

[57] Iizuka T, Yahata M, Shimizu A., “Potential mechanism involved in removal of hydrophobic pesticides from vegetables by hydrostatic pressure”, Journal of food engineering, 2013, Vol.119, no.1, pp.1-6.

[58] Rasolonjatovo MA, Cemek M, Cengiz MF, Ortaç D, Konuk HB, Karaman E, Kocaman AT, Göneş S., “Reduction of methomyl and acetamiprid residues from tomatoes after various household washing solutions”, International journal of food properties, 2017, Vol.20, no.11, pp.2748-59.

[59] Collings AF, Gwan PB., “Ultrasonic destruction of pesticide contaminants in slurries”, Ultrasonics sonochemistry, 2010, Vol.17, no.1, pp.1-3.

[60] Zhang Y, Hou Y, Chen F, Xiao Z, Zhang J, Hu X., “The degradation of chlorpyrifos and diazinon in aqueous solution by ultrasonic irradiation: effect of parameters and degradation pathway”, Chemosphere. 2011, Vol.82, no.8, pp.1109-15.

[61] Behbahani M, Veisi A, Omidi F, Badi MY, Noghrehabadi A, Esrafili A, Sobhi HR., “The conjunction of a new ultrasonic-assisted dispersive solid-phase extraction method with HPLC-DAD for the trace determination of diazinon in biological and water media”, New Journal of Chemistry, 2018, Vol.42, no.6, pp.4289-96.

[62] Wang CK, Shih YH., “Facilitated ultrasonic irradiation in the degradation of diazinon insecticide”, Sustainable Environment Research, 2016, Vol.26, no.3, pp.110-6.

[63] Raut-Jadhav S, Pinjari DV, Saini DR, Sonawane SH, Pandit AB., “Intensification of degradation of methomyl (carbamate group pesticide) by using the combination of ultrasonic cavitation and process intensifying additives”, Ultrasonics sonochemistry, 2016, Vol.31, pp.135-42.

[64] سلطانی، س.، موقرنژاد، ک،. تقی پور، ا،ح،. "اندازهگیری و مدل‌سازی سرعت صوت در الکل‌های خالص"، مجله صوت و ارتعاش، 1397،

 شماره 14، دوره 7، صص.17-23.

[65] موقرنژاد، ک.، ا.ح. تقی‌پور،. "ارائه یک روش فرکانس پایین و دستگاه مربوطه به منظور اندازه‌گیری سرعت صوت در مایعات"، مجله صوت

و ارتعاش، 1397، شماره 13، دوره 7، صص. 33-38.

[66] تاج‌الدین، ب،. رفیعی، ز.، "استفاده از امواج فراصوت در خشک کردن مواد غذایی (مطالعه موردی: تولید چیپس سیب)"، مجله صوت و

ارتعاش، 1397، شماره 14، دوره 7، صص 90-97.

[67] قربانی، م،. ابونجمی م،. قربانی جاوید، م،. "امواج فراصوتی روشی نوین در استخراج ترکیب‌های گیاهی"، مجله صوت و ارتعاش، 1394،

شماره 8، دوره 4، صص 85-99.

[68] Safaiee P, Taghipour A, Vahdatkhoram F, Movagharnejad K., “Extraction of phenolic compounds from Mentha aquatica: the effects of sonication time, temperature and drying method”. Chemical Papers, 2019, pp.1-7.

[69] Shadmehr J, Mirsoleimani-azizi SM, Zeinali S, Setoodeh P., “Electrocoagulation process for propiconazole elimination from wastewater: experimental design for correlative modeling and optimization”, International Journal of Environmental Science and Technology, 2019, Vol.16, no.10, pp.5409-20.

[70] Mahamuni NN, Adewuyi YG., “Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation”, Ultrasonics sonochemistry, 2010, Vol.17, no.6, pp.990-1003.

[71] Vega LP, Soltan J, Peñuela GA., “Sonochemical degradation of triclosan in water in a multifrequency reactor”, Environmental Science and Pollution Research, 2019,  Vol.26, no.5, pp.4450-61.

[72] Ikehata K, El-Din MG., “Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review”, Journal of Environmental Engineering and Science, 2006, Vol.5, no.2, pp.81-135.