اثر الکتریسیته و مغناطیس بر انتشار موج در سیستم‏های نانوسازه-نانوسیال بر بستر ویسکو پاسترناک الکترومغناطیسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 گروه مهندسی مکانیک، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر، ایران

3 هیات علمی/ دانشگاه صنعتی اصفهان

چکیده

در این‏ مقاله تأثیر میدان‏های نیروی الکتریکی با ولتاژهای مثبت یا منفی و مغناطیسی بر انتشار موج و سرعت فاز در نانوسیستم‏های دارای برهم‏کنش سازه-سیال مورد بررسی قرار می‏گیرد. بدین منظور، نانوپوسته‏های کربنی استوانه‏ای دارای حرکت محوری حامل نانوسیال تعبیه شده بر بستر ویسکو-پاسترناک الکترومغناطیسی درنظر گرفته می‏شود. دراینجا فرض می‏شود بستر الاستیکی ویسکو-پاسترناک شامل فنرهایی به‏صورت سیم‏پیچ‏های ایری باشد، لذا اعمال یک میدان‏‏الکتریکی به سیستم موجب ایجاد میدان مغناطیسی شده و نانوسیستمی مغناطیسی-الکتریکی-الاستیک حاصل می‏شود. میدان مغناطیسی هم بر سازه به‏صورت اعمال نیروی لورنتس و هم بر سیال با استفاده از اعداد نادسن و هارتمن در پراکندگی فونون‏ تأثیرگذار خواهد بود. معادلات حاکم تحت نیروهای هیدرودینامیکی، الکتریکی، مغناطیسی و برشی براساس تئوری تغییر شکل برشی مرتبه بالای استوانه‏ای-سینوسی- غیرمحلی با استفاده از روش انرژی و معادلات تعمیم یافته ناویر-استوکس استخراج می‏شوند. نتایج حاصل‏شده در این تحقیق می‏توانند در طراحی و ساخت ابزارآلات سلامت‏سنجی، استحصال انرژی و رگ‏های انتقال دهنده دارو در مقیاس نانو مورد بهره‏برداری قرار گیرند.


 


 

 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Electro-Magneto wave propagation of nanostructure-nanofluid systems resting on an electromagnetic visco-Pasternak medium

نویسندگان [English]

  • soheil oveissi 1
  • mehdi salehi 1
  • aazam ghassemi 1
  • S.Ali eftekhari 2
  • Saeed Ziaei-Rad 3
1 Department of Mechanical engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran
2 Department of Mechanical engineering, Islamic Azad University, Khomeinishahr Branch, Khomeinishahr, Iran
3 Department of Mechanical engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
چکیده [English]

This article investigates the effect of magnetic and electric force fields with positive or negative voltages on wave propagation and phase velocity of nanosystems, including structure-fluid interaction. To this end, nanofluid conveying cylindrical carbon nanoshells with axial movement embedded on electromagnetic visco-Pasternak media are considered. Herein, it is assumed that the elastic visco-Pasternak medium includes springs in the form of airy coils. Thus, applying an electric field to the system cause to make a magnetic field and a magnetic-electric-elastic (MEE) nanosystem is obtained. The magnetic field will affect both the structure and the flowing fluid respectively by applying the Lorentz force and using the Knudsen and Hartmann numbers and then the phonon scattering occurs. The governing equations under hydrodynamic, electric, magnetic, and shear forces are derived based on the cylindrical-sinusoidal-nonlocal high-order shear deformation (CSN-HSDT) proposed theory using the energy method and generalized Navier-Stokes equations. The results obtained in this research can be used in the design and manufacturing the health measuring instruments, energy harvesting, and drug transporting vessels on a nano-scale.

کلیدواژه‌ها [English]

  • wave propagation
  • cylindrical carbon nanoshells with axial movement
  • Lorentz force
  • magnetic-electric-elastic fields
  • electromagnetic visco-Pasternak media
[1] Kolesnikov, Alexander I., George F. Reiter, Narayani Choudhury, Timothy R. Prisk, Eugene Mamontov, Andrey Podlesnyak, George Ehlers, Andrew G. Seel, David J. Wesolowski, and Lawrence M. Anovitz, "Quantum tunneling of water in beryl: a new state of the water molecule", Physical review letters, 2016, Vol.116, no.16, p.167802.
[2] Craighead, Harold G., "Nanoelectromechanical systems", Science, 2000, Vol.290, no.5496, pp.1532-1535.
[3] Mattia, Davide, and Yury Gogotsi, "Static and dynamic behavior of liquids inside carbon nanotubes", Microfluidics and Nanofluidics, 2008, Vol.5, no.3, pp.289-305.
[4] Sawano, Shunichi, Takayuki Arie, and Seiji Akita, "Carbon nanotube resonator in liquid", Nano Letters, 2010, Vol.10, no.9, pp.3395-3398.
[5] Rao, C. N. R., and A. K. Cheetham. "Science and technology of nanomaterials: current status and future prospects." Journal of Materials Chemistry 11, no. 12 (2001): 2887-2894.
[6] Oveissi, Soheil, Davood Toghraie, and Seyyed Ali Eftekhari, "Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid", Physica E: Low-dimensional Systems and Nanostructures, 2016, Vol.83, pp.275-283.
[7] Ansari, R., Pourashraf, T., and Gholami, R., “An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory”, Thin-Walled Structures, 2015, Vol.93, pp.169-176.‏
[8] Liu, C., Yu, J., Xu, W., Zhang, X., and Wang, X., “Dispersion characteristics of guided waves in functionally graded anisotropic micro/nano-plates based on the modified couple stress theory”, Thin-Walled Structures, 2021, Vol.161, pp.107527.‏
[9] Karami, B., Janghorban, M., and Tounsi, A., “Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory”, Thin-Walled Structures, 2018, Vol.129, pp.251-264.‏
[10] Oveissi, S., Toghraie, D., and Eftekhari, S.A., “Analysis of transverse vibrational response and instabilities of axially moving CNT conveying fluid”, International Journal of Fluid Mechanics Research, 2017, Vol.44, no.2, pp.115-129.
[11] Mahmoudpour, E., and Esmaeili, M., “Nonlinear free and forced vibration of carbon nanotubes conveying magnetic nanoflow and subjected to a longitudinal magnetic field using stress-driven nonlocal integral model”, Thin-Walled Structures, 2021, Vol.166, pp.108134.
[12] Shen, Z.B., Sheng, L.P., Li, X.F., and Tang, G.J., “Nonlocal Timoshenko beam theory for vibration of carbon nanotube-based biosensor”, Physica E: Low-dimensional Systems and Nanostructures, 2012, Vol.44, no.7-8, pp.1169-1175.
[13] Ecsedi, I., and Baksa, A., “Free axial vibration of nanorods with elastic medium interaction based on nonlocal elasticity and Rayleigh model”, Mechanics Research Communications, 2017, vol.86, pp.1-4.‏
[14] Wang, Q., and Varadan, V.K., “Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes”, Smart Materials and Structures, 2007, vol.16, no.1, pp.178.
[15] Rezaiee-Pajand, M., Sobhani, E., and Masoodi, A.R., “Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells”, Thin-Walled Structures, 2021, vol.159, pp.107272.‏
[16] Silvestre, N., Wang, C.M., Zhang, Y.Y., and Xiang, Y., “Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio”, Composite Structures, 2011, vol.93, no.7, pp.1683-1691.‏
[17] Eringen, A.C., “Relation between non-local elasticity and lattice dynamics”, Crystal Lattice Defects, 1977, vol.2, no.7, pp.51-57.
[18] Oveissi, S., and Ghassemi, A., “Longitudinal and transverse wave propagation analysis of stationary and axially moving carbon nanotubes conveying nano-fluid”, Applied Mathematical Modelling, 2018, vol.60, pp.460-477.
[19] Arefi, M., “Electro-mechanical vibration characteristics of piezoelectric nano shells”, Thin–Walled Structures, 2020, vol.155, pp.106912.
[20] Adab, N., Arefi, M., and Amabili, M., “A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets”, Composite Structures, 2022, vol.279, pp.114761.‏
[21] Arefi, M., and Amabili, M. “A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell, based on nonlocal three-dimensional theory”, Composite Structures, 2021, vol.257, pp.113100.‏
[22] Arefi, M., & Zenkour, A. M. “Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation”, Mechanics Research Communications, 2017, vol.79, pp.51-62.‏
[23] Behdad, S., and Arefi, M. “A mixed two-phase stress/strain driven elasticity: In applications on static bending, vibration analysis and wave propagation”, European Journal of Mechanics-A/Solids, 2022, vol.94, pp.104558.‏
[24] Arefi, M., and Zenkour, A.M. “Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko’s sandwich piezoelectric microbeam”, Journal of Sandwich Structures & Materials, 2019, vol.21, no.4, pp.1243-1270.‏
[25] Arefi, M. “Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage”, Applied Mathematics and Mechanics, 2016, vol.37, no.3, pp.289-302.‏
[26] Arefi, M., and Zenkour, A M. “Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory”, Materials Research Express, 2016, vol.3, no.11, pp.115704.‏
[27] Bisheh, H.K., and Wu, N., “Wave propagation in piezoelectric cylindrical composite shells reinforced with angled and randomly oriented carbon nanotubes”, Composites Part B: Engineering, 2019, vol.160, pp.10-30.
[28] Arani, A.G., Haghparast, E., and Zarei, H.B.A., “Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field”, Physica B: Condensed Matter, 2016, vol.495, pp.35-49.‏
[29] Karami, B., Shahsavari, D., and Li, L., “Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory”, Physica E: Low-dimensional Systems and Nanostructures, 2018, vol.97, pp.317-327.
[30] Suiker, A.S.J., Metrikine, A.V., and De Borst, R., “Dynamic behaviour of a layer of discrete particles, part 1: Analysis of body waves and eigen modes”, Journal of Sound and Vibration, 2001, vol.240, no.1, pp.1-18.‏
[31] Suiker, A.S.J., Metrikine, A.V., and De Borst, R., “Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models”, International Journal of Solids and Structures, 2001, vol.38, no.9, pp.1563-1583.‏
[32] Bin, W., Jiangong, Y., and Cunfu, H., “Wave propagation in non-homogeneous magneto-electro-elastic plates”, Journal of Sound and Vibration, 2008, vol.317, no.1-2, pp.250-264.‏
[33] Lee, Y.C., and Kuo, S.H., “Leaky Lamb wave of a piezoelectric plate subjected to conductive fluid loading: Theoretical analysis and numerical calculation”, Journal of Applied Physics, 2006, vol.100, no.7, pp.073519.‏
[34] Wang, Q., and Varadan, V.K., “Wave characteristics of carbon nanotubes”, International Journal of Solids and Structures, 2006, vol.43, no.2, pp.254-265.‏
[35] Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F., and Tour, J.M., “Directional control in thermally driven single-molecule nanocars”, Nano Letters, 2005, vol.5, no.11, pp.2330-2334.
[36] Morin, J.F., Shirai, Y., and Tour, J.M., “En route to a motorized nanocar”, Organic letters, 2006, vol.8, no.8, pp.1713-1716.
[37] Wang, Y.Q., Liang, C., and Zu, J.W., “Wave propagation in functionally graded cylindrical nanoshells based on nonlocal Flügge shell theory”, The European Physical Journal Plus, 2019, vol.134, no.5, pp.1-15.‏
[38] Nayfeh, J.F., and Rivieccio, N.J., “Nonlinear vibration of composite shell subjected to resonant excitations”, Journal of Aerospace Engineering, 2000, vol.13, no.2, pp.59-68.
[39] Amabili, M., “Nonlinear vibrations and stability of shells and plates”, London: Cambridge University Press, 2008.
[40] Amabili, M., and Reddy, J., “A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells”, International Journal of Non-Linear Mechanics, 2010, vol.45, no.4, pp.409-418.
[41] Mantari, J., and Soares, C.G., “Finite element formulation of a generalized higher order shear deformation theory for advanced composite plates”, Composite Structures, 2013, vol.96, pp.545-553.
[42] Oveissi, S., Toghraie, D., Eftekhari, S.A., and Chamkha, A.J. “Instabilities of SWCNT Conveying Laminar, Incompressible and Viscous Fluid Flow: Effects of Knudsen number, the Winkler, the Pasternak Elastic, and the Viscoelastic Medium”, International Journal of Numerical Methods for Heat & Fluid Flow, 2019, vol.30, no.4, pp.1773-1794.
[43] Liu, Z., Styers-Barnett, D.J., Puretzky, A.A., and et Al., “Pulsed laser CVD investigations of single-wall carbon nanotube growth dynamics”, Applied Physics A, 2008, vol.93, no.4, pp.987–993.
[44] Salehi-Khojin, A., and Jalili, N., “Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermomechanical loadings”, Compos. Sci. Technol., 2008, vol.68, pp.1489–1501.
[45] Sai, N., and Mele, E.J., “Microscopic theory for nanotube piezoelectricity”, Physical Review B, 2003, vol.68, no.24, pp.241405.‏
[46] Ke, L.L., Wang, Y.S., Yang, J., and Kitipornchai, S., “The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells”, Smart Materials and Structures, 2014, vol.23, no.12, pp.125036.‏
[47] Wang, Q., “On buckling of column structures with a pair of piezoelectric layers”, Engineering structures, 2002, vol.24, no.2, pp.199-205.
[48] Kraus, J., “Electromagnetics”, USA: McGraw-Hill Inc., 1984.
[49] White, F.M., “Fluid Mechanics”, New York: McGraw-Hill, 1982.
[50] Karniadakis, G., Beskok, A., and Aluru, N., “Microflows and nanoflows: Fundamentals and simulation”, New York: Springer, Science-Business Media, vol.29, 2006.
[51] Oveissi, S., Ghassemi, A., Salehi, M., Eftekhari, S.A., and Ziae, S., “Hydro–Hygro–Thermo–Magneto–Electro​ elastic wave propagation of axially moving nano-cylindrical shells conveying various magnetic-nano-fluids resting on the electromagnetic-visco-Pasternak medium”, Thin-Walled Structures, 2022, vol.173, pp.108926.‏
[52] Sadeghi-Goughari, M., Jeon, S., and Kwon, H.J., “Fluid structure interaction of cantilever micro and nanotubes conveying magnetic fluid with small size effects under a transverse magnetic field”, Journal of Fluids and Structures, 2020, vol.94, pp.102951.
[53] Malekzadeh, A., Heydarinasab, A., and Dabir, B., “Magnetic field effect on fluid flow characteristics in a pipe for laminar flow”, J. Mech. Sci. Technol., 2011, vol.25, no.2, pp.333-339.
[54] Pollard, W., and Present, R.D., “On gaseous self-diffusion in long capillary tubes”, Physical Review, 1984, vol.73, no.7, pp.762.
[55] Ventsel, E., and Krauthammer, T., “Thin plates and shells: theory: analysis, and applications”, New York: Marcel Dekker, 2001.
[56] Shen, H.S., “Functionally graded materials: nonlinear analysis of plates and shells”, CRC press, Taylor & Francis Group, 2016.
[57] Zhang, Y., Wang, C., and Tan, V., “Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics”, Advances in Applied Mathematics and Mechanics, 2009, vol.1, no.1, pp.89-106.
[58] Ansari, R., Ajori, S., and Arash, B., “Vibrations of single-and double-walled carbon nanotubes with layerwise boundary conditions: a molecular dynamics study”, Current Applied Physics, 2012, vol.12, no.3, pp.707-711.
[59] Wen, H., He, M.F., Huang, Y., and Chen, J. “Free vibration analysis of single-walled carbon nanotubes based on the nonlocal higher-order cylindrical beam model”, Acta Acustica united with Acustica, 2018, vol.104, no.2, pp.284-294.
[60] Mirsky, I., and Herrmann, G., “Nonaxially symmetric motions of cylindrical shells”, The Journal of the Acoustical Society of America, 1958, vol.31, no.2, pp.250.
[61] Reddy, J.N., “Exact solutions of moderately thick laminated shells”, Journal of Engineering Mechanics, 1984, vol.110, no.5, pp.794-809.
[62] Khalili, S., Davar, A., and Fard, K.M., “Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory”, International journal of Mechanical sciences, 2012, vol.56, no.1, pp.1-25.
[63] Armenàkas, Anthony E., Denos C. Gazis, and George Herrmann. “Free vibrations of circular cylindrical shells”, New York: Elsevier, 2016.
[64] Shokrgozar, A., Safarpour, H., and Habibi, M., “Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, vol.234, no.2, pp.512-529.