افت انتقال صوت در پوسته‌‏های استوانه‌ای کامپوزیتی هوشمند پیزوالکتریک تحت امواج صوتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه جامع امام حسین ع

2 دانشگاه جامع امام حسین (ع)

چکیده

در این پژوهش فرض شده است که پوسته ساندویچی خارجی دارای هسته ساخته شده از مواد مدرج تابعی همراه با وصله‌های پیزوالکتریک و پوسته داخلی از جنس کامپوزیت‏های لایه‏ای باشد. پوسته‏های استوانه‏ای دو جداره دارای سه محیط آکوستیک خارجی، داخلی و میانی هستند و تحت برخورد امواج آکوستیک با زاویه اثر مشخص قرار گرفته‌اند. معادلات دینامیکی سازه با استفاده از فرضیه میدان جابه‌جایی برشی مرتبه اول پوسته‏ها و اصل همیلتون استخراج شده‏اند و همراه با شرایط مرزی سیال/ سازه معادلات نهایی را تشکیل می‏دهند. با استفاده از بسط‏های سری فوریه فشار‏های صوت ورودی، برگشتی و خروجی و جابه‌جایی‏های پوسته، معادلات دینامیکی گسسته‏سازی شده و به فرم ماتریس حالت درمی‏آیند. بعد از اعتبارسنجی نتایج با مقالات موجود، نهایتا اثرات، ولتاژ اعمالی از طرف وصله‏های پیزوالکتریک، درصد مواد تابعی، زاویه الیاف به‌کار رفته در کامپوزیت‌ها، انواع مواد کامپوزیتی، تعداد وصله‏های پیزوالکتریک و زاویه برخورد بر رفتار افت انتقال صوت سازه در محدوده فرکانسی مشخصی مورد ارزیابی قرار گرفته است. و در نهایت پارامترهای ولتاژ اعمالی از طرف وصله‏های پیزوالکتریک، درصد مواد تابعی، زاویه الیاف به‌کار رفته در کامپوزیت‌ها، انواع مواد کامپوزیتی، تعداد وصله‏های پیزوالکتریک و زاویه برخورد، افت انتقال صوت را بیشتر کرد.


 


 

 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sound transmission loss in piezoelectric intelligent composite cylindrical shells under sound waves

نویسندگان [English]

  • hossein Azarioun 1
  • Mohammad Reza Elhami 2
1 Mech. Eng., Imam Hossein Comprehensive University, Tehran, Iran
2 Mechanical Engineering Department, Imam Hossein comprehensive University, Tehran, Iran
چکیده [English]

In this study, it is assumed that the outer shell of the sandwich has a core made of functional calibrated materials with piezoelectric patches and the inner shell is made of layered composites. Double-walled cylindrical shells have three external, internal and middle acoustic environments and are exposed to acoustic waves with a specific angle of effect. The dynamic equations of the structure are derived using the hypothesis of first-order shear displacement field of shells and Hamilton principle and together with the fluid / structure boundary conditions form the final equations. Using the Fourier series expansions of the input, return, and output sound pressures and shell displacements, the dynamic equations are discretized to form a state matrix. After validating the results with existing articles, finally the effects, voltage applied by piezoelectric patches, percentage of functional materials, angle of fibers used in composites, types of composite materials, number of piezoelectric patches and angle of impact on the structure of sound transmission behavior It has been evaluated in a certain frequency range. Finally, the voltage parameters applied by the piezoelectric patches, the percentage of functional materials, the angle of the fibers used in the composites, the types of composite materials, the number of piezoelectric patches and the angle of impact increased the sound loss.

کلیدواژه‌ها [English]

  • : Sound transmission loss
  • Cylindrical shells
  • Functionally graded materials
  • Piezoelectric
  • First-order shear deformation Theory
[1] Bai, Yong, and Wei-Liang Jin, "Ultimate strength of cylindrical shells" Marine Structural Design, 2016, pp.353-65.
[2] Xie, M. X., H. L. Chen, J. H. Wu, and F. G. Sun, "Application of energy finite element method to high-frequency structural-acoustic coupling of an aircraft cabin with truncated conical shape", Computer Modeling in Engineering & Sciences (CMES), 2010, Vol.61, no.1, pp.1-22.
[3] Yang, Yi, Brian R. Mace, and Michael J. Kingan, "Prediction of sound transmission through, and radiation from, panels using a wave and finite element method", The Journal of the Acoustical Society of America, 2017, Vol.141, no.4, pp.2452-2460.
[4] Li, Chengxi, Bryce K. Campbell, Yuming Liu, and Dick KP Yue, "A fast multi-layer boundary element method for direct numerical simulation of sound propagation in shallow water environments", Journal of Computational Physics, 2019, Vol.392 pp.694-712.
[5] Zhou, Jie, Atul Bhaskar, and Xin Zhang, "Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow", Journal of Sound and Vibration, 2013, Vol.332, no.16, pp.3724-3734.
[6] Talebitooti, R., and M. R. Zarastvand, "Vibroacoustic behavior of orthotropic aerospace composite structure in the subsonic flow considering the Third order Shear Deformation Theory", Aerospace Science and Technology, 2018, Vol.75, pp.227-236.
[7] Mei-xia, Chen, Luo Dong-ping, Chen Xiao-ning, and Shen Rui-xi, "Analytical solution of radiation sound pressure of double cylindrical shells in fluid medium", Applied Mathematics and Mechanics, 2002, Vol.23, no.4 pp.463-470.
[8] Talebitooti, R., and AM Choudari Khameneh, "Wave propagation across double-walled laminated composite cylindrical shells along with air-gap using three-dimensional theory", Composite Structures, 2017, Vol.165, pp.44-64.
[9] Zhang, Qunlin, Yijun Mao, and Datong Qi, "Effect of perforation on the sound transmission through a double-walled cylindrical shell", Journal of Sound and Vibration, 2017, Vol.410, pp.344-363.
[10] Zhou, Jie, Atul Bhaskar, and Xin Zhang "The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material", Journal of Sound and Vibration, 2014, Vol.333, no.7, pp.1972-1990.
[11] Talebitooti, R., and H. D. Gohari, "Optimization of Sound transmission through composite cylinder with poroelastic core considering VCM", Mechanics of Advanced Materials and Structures, 2020, Vol.27, no.3, pp.238-249.
[12] Talebitooti, R., M. R. Zarastvand, and M. R. Gheibi, "Acoustic transmission through laminated composite cylindrical shell employing third order shear deformation theory in the presence of subsonic flow", Composite Structures, 2016, Vol.157, pp.95-110.
[13] Talebitooti, R., K. Daneshjou, and A. Tarkashvand, "Study of imperfect bonding effects on sound transmission loss through functionally graded laminated sandwich cylindrical shells", International Journal of Mechanical Sciences, 2017, Vol.133, pp.469-483.
[14] Ahmadi, Mastaneh, Mostafa Talebitooti, and Roohollah Talebitooti, "Analytical investigation on sound transmission loss of functionally graded nanocomposite cylindrical shells reinforced by carbon nanotubes", Mechanics Based Design of Structures and Machines, 2020, pp.1-18.
[15] Hasheminejad, Seyyed M., Masoud Cheraghi, and Ali Jamalpoor, "Active damping of sound transmission through an electrorheological fluid-actuated sandwich cylindrical shell", Journal of Sandwich Structures & Materials, 2020, Vol.22, no.3, pp.833-865.
[16] Reaei, Sh, A. Tarkashvand, and R. Talebitooti "Applying a functionally graded viscoelastic model on acoustic wave transmission through the polymeric foam cylindrical shell", Composite Structures, Vol.244, 2020, p.112261.
[17] Parrinello, A., K. Kesour, G. L. Ghiringhelli, and N. Atalla, "Diffuse field transmission through multilayered cylinders using a Transfer Matrix Method", Mechanical Systems and Signal Processing, 2020, Vol.136, p.106514.
[18] Oliazadeh, Pouria, Anooshiravan Farshidianfar, and Malcolm J. Crocker, "Experimental and analytical investigation on sound transmission loss of cylindrical shells with absorbing material", Journal of Sound and Vibration, 2018, Vol.434, pp.28-43.
[19] Lee, Joon-Hyun, and J. Kim, "Study on sound transmission characteristics of a cylindrical shell using analytical and experimental models", Applied acoustics, 2003, Vol.64, no.6, pp.611-632.
[20] Shojaeefard, MOHAMMAD HASSAN, R. O. U. H. O. L. L. A. H. Talebitooti, R. E. Z. A. Ahmadi, and MOHAMMAD REZA Gheibi, "Sound transmission across orthotropic cylindrical shells using third-order shear deformation theory", Latin American Journal of Solids and Structures, 2014, Vol.11, pp.2039-2072.
[21] Daneshjou, K., R. Talebitooti, and A. Tarkashvand, "Analysis of sound transmission loss through thick-walled cylindrical shell using three-dimensional elasticity theory", International Journal of Mechanical Sciences, 2016, Vol.106, pp.286-296.
[22] Talebitooti, R., R. Ahmadi, and M. H. Shojaeefard, "Three-Dimensional wave propagation on orthotropic cylindrical shells with arbitrary thickness considering state space method," Composite Structures, 2015, Vol.132, pp.239-254.
[23] Magniez, Julien, Jean-Daniel Chazot, Mohamed Ali Hamdi, and Bernard Troclet, "A mixed 3D-Shell analytical model for the prediction of sound transmission through sandwich cylinders", Journal of Sound and Vibration, 2014, Vol.333, no.19, pp.4750-4770.
[24] Liu, Yu, and Chuanbo He, "Diffuse field sound transmission through sandwich composite cylindrical shells with poroelastic core and external mean flow", Composite Structures, 2016, Vol.135, pp.383-396.
[25] Golzari, Masoud, and Ali Asghar Jafari, "Sound transmission loss through triple-walled cylindrical shells with porous layers", The Journal of the Acoustical Society of America, 2018, Vol.143, no.6, pp.3529-3544.
[26] الهامی و آذریون، "افت انتقال صوت در یک پوسته استوانه‌ای ساخته شده از مواد مدرج تابعی با وصله‌های پیزوالکتریک،" فصلنامه مکانیک هوافضا، 2022.‎ 
[27] Liu, Yu, and Chuanbo He, "Diffuse field sound transmission through sandwich composite cylindrical shells with poroelastic core and external mean flow", Composite Structures, 2016, Vol.135, pp.383-396.
[28] Leissa, Arthur W., "Vibration of shells, scientific and technical information office", National Aeronautics and Space Administration, 1973, Vol.288.
[29] Lu, Lu, Li Zhu, Xingming Guo, Jianzhong Zhao, and Guanzhong Liu, "A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells", Applied Mathematics and Mechanics, 2019, Vol.40, no.12, pp.1695-1722.
[30] Zippo, Antonio, Marco Barbieri, Giovanni Iarriccio, and Francesco Pellicano, "Nonlinear vibrations of circular cylindrical shells with thermal effects: an experimental study", Nonlinear Dynamics, 2020, Vol.99, no.1, pp.373-391.
[31] Mohamadi, Arash, Majid Shahgholi, and Faramarz Ashenai Ghasemi, "Nonlinear vibration of axially moving simply-supported circular cylindrical shell", Thin-Walled Structures, 2020, Vol.156, p.107026.
[32] Hussain, Muzamal, Muhammad Nawaz Naeem, and Mohammad Reza Isvandzibaei, "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, Vol.232, no.24, pp.4564-4577.
[33] Leissa, Arthur W. "Vibration of shells, scientific and technical information office", National Aeronautics and Space Administration, 1973, Vol.288.
[34] Zheng, Dayuan, Jingtao Du, and Yang Liu, "Vibration characteristics analysis of an elastically restrained cylindrical shell with arbitrary thickness variation", Thin-Walled Structures, 2021, Vol.165, p.107930.
[35] Liu, Yu, and Chuanbo He, "Diffuse field sound transmission through sandwich composite cylindrical shells with poroelastic core and external mean flow", Composite Structures, 2016, Vol.135, pp.383-396.
[36] Wang, Xu, "Transient responses of laminated anisotropic piezothermoelastic plates and cylindrical shells with interfacial diffusion and sliding in cylindrical bending", Mathematics and Mechanics of Solids, 2019, Vol.24, no.4, pp.1065-1090.
[37] Pradhan, S. C., C. T. Loy, K. Y. Lam, and J. N. Reddy, "Vibration characteristics of functionally graded cylindrical shells under various boundary conditions", Applied Acoustics, 2000, Vol.61, no.1, pp.111-129.
[38] Soldatos, K. P., and V. P. Hadjigeorgiou, "Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels", Journal of sound and vibration, 1990, Vol.137, no.3, pp.369-384.
[39] Khdeir, A. A., J. N. Reddy, and D. Frederick, "A study of bending, vibration and buckling of cross-ply circular cylindrical shells with various shell theories", International Journal of Engineering Science, 1989, Vol.27, no.11, pp.1337-1351.
[40] Ke, L. L., Y. S. Wang, and J. N. Reddy, "Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Composite Structures, 2014, Vol.116, pp.626-636.
[41] Zhou, Jie, Atul Bhaskar, and Xin Zhang, "The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material", Journal of Sound and Vibration, 2014, Vol.333, no.7, pp.1972-1990.