امواج لمب و کاربرد آن‌ها در ارزیابی غیرمخرب (NDE)

نوع مقاله: مقاله مروری

نویسندگان

1 دانشگاه صنعتی خواجه نصیرالدین طوسی

2 دانشگاه صنعتی خواجه نصیرالدین طوسی دانشکده مهندسی مکانیک تهران، م ونک، خ ملاصدرا، خ پردیس، پ ۷

چکیده

امواج لمب یا امواج ورقی از امواج هدایت‌شده مکانیکی‌اند که در ورق‌ها انتشار می‌یابند. در این مقاله ضمن بررسی خواص این امواج، تفاوت این امواج با سایر امواج مکانیکی بررسی می‌شود و مزایا و معایب آنها نسبت به سایر امواج مورد بحث قرار می‌گیرد. امواج لمب دارای خاصیت دیسپرژن[i] هستند؛ یعنی سرعت آنها وابسته به فرکانس است. این خاصیت امواج لمب، که بسیار پراهمیت است، در این مقاله بررسی و روش‌های متداول تولید و دریافت امواج لمب و کاربردهای آنها در صنایع مختلف ارائه و شماری از پژوهش‌های انجام‌شده در خصوص امواج لمب در زمینه‌های نظری، تجربی، روش اجزای محدود و پردازش سیگنال به اختصار مرور خواهد شد. هرچند در این مقاله کاربردهای متنوع امواج لمب مورد بحث قرار خواهند گرفت، اما رویکرد مقالة پیش رو بیشتر معطوف به کاربرد امواج لمب در ارزیابی غیرمخرب قطعات است.
[i]. dispersion

کلیدواژه‌ها

موضوعات


[1] Lamb, H., “On waves in an elastic plate,” Proc. R. Soc. London. Ser. A, Contain. Pap. A Math. Phys. character, 1917, pp. 114-128.

[2] Su, Z. L. Ye. “Identification of damage using lamb waves: from fundamentals to applications.” Vol. 48, Springer, 2009.

[3] Rose, J. L., Ultrasonic waves in solid media, Cambridge University, 2004.

[4] Rose, J. L., Ultrasonic Guided Waves in Solid Media, Cambridge University, 2014.

[5] Lowe, M., “Disperse”, Imperial College of London, Department of Mechanical Engineering, NDT Lab, 1997.

[6] “PACshare Dispersion Curves”, Physical Acoustics Corp.

[7] “Vallen dispersion Curve.” Vallen Systeme GmbH.

[8] Bocchini, P., A. Marzani, E. Viola. “Graphical user interface for guided acoustic waves.” J. Comput. Civ. Eng., vol. 25, No. 3, 2010, pp. 202-210.

[9] Honarvar, F., E. Enjilela, A. N. Sinclair. “An alternative method for plotting dispersion curves.” Ultrasonics, Vol. 49, No. 1, 2009, pp. 15-18.

[10] Lin, W., L. Fan, C. Gan, B. Xu, Z. Zhu. “Study on measurement of dispersive characteristics of higher order mode Lamb waves.” Ultrasonics, Vol. 44, No. 0, 2006, pp. 911-915.

[11] Deng, M.-X. J. Yang. “Characterization of elastic anisotropy of a solid plate using nonlinear Lamb wave approach.” J. Sound Vib., Vol. 308, No. 1, 2007, pp. 201-211.

[12] Lin, W., X. Li. “High sensitive evaluation fatigue of plate using high mode Lamb wave.” Appl. Acoust., Vol. 74, No. 8, 2013, pp. 1018-1021.

[13] Matsuda, N., S. Biwa. “Frequency Dependence of Second-Harmonic Generation in Lamb Waves.” J. Nondestruct. Eval., 2014, pp. 1-9.

[14] Badcock, R. A., E. A. Birt. “The use of 0-3 piezocomposite embedded Lamb wave sensors for detection of damage in advanced fibre composites.” Smart Mater. Struct., Vol. 9, No. 3, 2000, p. 291.

[15] Discalea, F. L., H. Matt, I. Bartoli, S. Coccia, G. Park, C. Farrar. “Health monitoring of UAV wing skin-to-spar joints using guided waves and macro fiber composite transducers.” J. Intell. Mater. Syst. Struct., Vol. 18, No. 4, 2007, pp. 373-388.

[16] “Piezoelectric Ceramic Elements”, http://www.prowave.com.tw/english/index.htm (accessed August 30, 2016)

[17] “Laser Ultrasonics”, http://www.intopsys.com/laserultrasonics (accessed August 30, 2016)

[18] Monkhouse, R. S. C., P. D. Wilcox, P. Cawley. “Flexible interdigital PVDF transducers for the generation of Lamb waves in structures.” Ultrasonics, Vol. 35, No. 7, 1997, pp. 489-498.

[19] Leonard, K. R., M. K. Hinders. “Lamb wave tomography of pipe-like structures.” Ultrasonics, Vol. 43, No. 7, 2005, pp. 574-583.

[20] Balageas, D., C.-P. Fritzen, A. Güemes, “Structural health monitoring.” Vol. 493, Wiley Online Library, 2006.

[21] Lei, Q., Y. Shenfang, W. Qiang, S. Yajie, Y. Weiwei. “Design and experiment of PZT network-based structural health monitoring scanning system.” Chinese J. Aeronaut., Vol. 22, No. 5, 2009, pp. 505-512.

[22] Clorennec, D., C. Prada, D. Royer. “Local and noncontact measurements of bulk acoustic wave velocities in thin isotropic plates and shells using zero group velocity Lamb modes.” J. Appl. Phys., Vol. 101, No. 3, 2007, p. 34908.

[23] Marzani, A., S. Salamone. “Numerical prediction and experimental verification of temperature effect on plate waves generated and received by piezoceramic sensors.” Mech. Syst. Signal Process., Vol. 30, No. 0, 2012, pp. 204-217.

[24] Anderås, E., L. Arapan, I. Katardjiev, V. Yantchev. “Thin Film Plate Wave Resonant Sensor for Pressure and Gravimetric Measurements.” Procedia Eng., Vol. 25, 2011, pp. 571-574.

[25] Chen, Z., T. Han, X. Ji, H. Guo, W. Shi. “Lamb wave sensors array for nonviscous liquid sensing.” Sci. China Ser. G Physics, Mech. Astron., Vol. 49, No. 4, 2006, pp. 461-472.

[26] Prasad, V. S. K., K. Balasubramaniam, E. Kannan, K. L. Geisinger. “Viscosity measurements of melts at high temperatures using ultrasonic guided waves.” J. Mater. Process. Technol., Vol. 207, No. 1, 2008, pp. 315-320.

[27] Faustmann, H., M. Münch, G. Lindner, M. Schmitt, M. Springer. “Measurement of the properties of liquids based on the dispersion of lamb waves in an acoustic waveguide.” Phys. Procedia, Vol. 3, No. 1, 2010, pp. 959-964.

[28] Song, H.-D., S. H. Cho, I. Jeon, C.-D. Kee. “A sensing medium exchangeable hydrogen sensor using Lamb waves.” Sensors Actuators B Chem., Vol. 162, No. 1, 2012, pp. 348-352.

[29] Zhou, L., J.-F. Manceau, F. Bastien. “Interaction between gas flow and a Lamb waves based microsensor.” Sensors Actuators A Phys., Vol. 181, 2012, pp. 1-5.

[30] Korde, N., T. Kundu. “Material hardness and ageing measurement using guided ultrasonic waves.” Ultrasonics, Vol. 53, No. 2, 2013, pp. 506-510.

[31] Deng, M. “Characterization of surface properties of a solid plate using nonlinear Lamb wave approach.” Ultrasonics, Vol. 44, 2006, pp. 1157-1162.

[32] Graff, K. F., Wave motion in elastic solids, Courier Dover, 1975.

[33] Viktorov, I. A. “Rayleigh and Lamb waves: physical theory and applications.” Vol. 147, Plenum press New York, 1967.

[34] Achenbach, J., Wave propagation in elastic solids, Elsevier, 1984.

[35] Cho, Y., J. L. Rose, “An elastodynamic hybrid boundary element study for elastic guided wave interactions with a surface breaking defect.” Int. J. Solids Struct., Vol. 37, No. 30, 2000, pp. 4103-4124.

[36] Rhee, S.-H., J.-K. Lee, J.-J. Lee. “The group velocity variation of Lamb wave in fiber reinforced composite plate.” Ultrasonics, Vol. 47, No. 1, 2007, pp. 55-63.

[37] Rheinfurth, M., N. Kosmann, D. Sauer, G. Busse, K. Schulte. “Lamb waves for non-contact fatigue state evaluation of composites under various mechanical loading conditions.” Compos. Part A Appl. Sci. Manuf., Vol. 43, No. 8, 2012, pp. 1203-1211.

[38] Hosseini, S. M. H., U. Gabbert. “Numerical simulation of the Lamb wave propagation in honeycomb sandwich panels: a parametric study.” Compos. Struct., Vol. 97, 2013, pp. 189-201.

[39] Masserey, B., C. Raemy, P. Fromme. “High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures.” Ultrasonics, 2014.

[40] Leduc, D., B. Morvan, A.-C. Hladky, P. Pareige, J. L. Izbicki. “Lamb wave propagation in a plate with a grooved surface with several spatial periodicities.” Ultrasonics, Vol. 44, 2006, pp. 1359-1363.

[41] Ramadas, C., K. Balasubramaniam, A. Hood, M. Joshi, C. V Krishnamurthy. “Modelling of attenuation of Lamb waves using Rayleigh damping: Numerical and experimental studies.” Compos. Struct., Vol. 93, No. 8, 2011, pp. 2020-2025.

[42] Lasn, K., A. Klauson, F. Chati, D. Décultot. “Experimental determination of elastic constants of an orthotropic composite plate by using lamb waves.” Mech. Compos. Mater., Vol. 47, No. 4, 2011, pp. 435-446.

[43] Leleux, A., P. Micheau, M. Castaings. “Long range detection of defects in composite plates using Lamb waves generated and detected by ultrasonic phased array probes.” J. Nondestruct. Eval., Vol. 32, No. 2, 2013, pp. 200-214.

[44] Olsson III, R. H., K. Hattar, S. J. Homeijer, M. Wiwi, M. Eichenfield, D. W. Branch, M. S. Baker, J. Nguyen, B. Clark, T. Bauer. “A high electromechanical coupling coefficient SH0 Lamb wave lithium niobate micromechanical resonator and a method for fabrication.” Sensors Actuators A Phys., Vol. 209, 2014, pp. 183-190.

[45] Mirahmadi, S. J., F. Honarvar. “Application of signal processing techniques to ultrasonic testing of plates by S0 Lamb wave mode.” NDT E Int., Vol. 44, No. 1, 2011, pp. 131-137.

[46] Alleyne, D. N., P. Cawley. “The interaction of Lamb waves with defects.” Ultrason. Ferroelectr. Freq. Control. IEEE Trans., Vol. 39, No. 3, 1992, pp. 381-397.

[47] Staszewski, W. J., S. G. Pierce, K. Worden, W. R. Philp, G. R. Tomlinson, B. Culshaw. “Wavelet signal processing for enhanced Lamb-wave defect detection in composite plates using optical fiber detection.” Opt. Eng., Vol. 36, No. 7, 1997, pp. 1877-1888.

[48] Jeong, H., J.-S. Lee, S.-M. Bae. “Defect detection and localization in plates using a lamb wave time reversal technique.” Int. J. Precis. Eng. Manuf., Vol. 12, No. 3, 2011, pp. 427-434.