مقاله

طرح‌یک سیستم فراصوتی با استفاده از تکنیک حباب‌ساز
جهت پرورش اتصالات چسبی

مهران سپهری خامه
کارشناسی ارشد مهندسی مکانیک
دانشکده خواهران دنیای طبیعی
mehran.sepehri@gmail.com

فرهنگ هنور
استاد دانشکده مهندسی مکانیک
دانشکده خواهران دنیای طبیعی
honarvar@kntu.ac.ir

تاریخ دریافت: 1396/02/30

چکیده
در این مقاله سیستم‌پیش‌بینی برای پرورش فراصوتی اتصالات چسبی به‌وسیله حباب‌سازی و ساخته شده است. در طراحی سیستم حباب‌سازی، از سیستم‌های سیگنال‌های ورودی مصرف شده که سیستم‌های ورودی و زوآرباک هدایای ورودی فراصوتی در موقعیت خود روی سیستم حباب‌ساز تنظیم می‌شود. با برقراری جریان آب جفت‌کننده‌ی ثابت و گردشی برای امکان فراصوتی ارسالی به قطعه‌ها، از آن فرآهن و به‌وسیله تکنیک‌های پیش‌بینی سیگنال‌ها حذف شده و ازدحام فراصوتی بیشتری در ناحیه مورد پیش‌بینی اجرا و از آن خروجی دیده شده و تولید می‌شود. پرورش فراصوتی توسط کلید مشخص به‌وسیله فراصوتی محصول کلیدی مشخص به‌وسیله اندازه‌گیری آهنگ‌های آفتابی وONA به شکل ترکیبی را می‌توان به شکل ترکیبی دو و سه‌بعدی مشاهده کرد و مراحل پرورش سیگنال را روی آنها انجام داد. برای شناسایی نابودی‌گر در ساختار اتصالات چسبی سالم و معنوی، روش مشاهده کامل مانند بازتاب‌های متولی از سطح دیواره‌بندی قطعه استفاده شده است. با توجه به نتایج آزمایشات ملاحظه شده که خواصهای دریافتی از قسمت مشترک اتصال (دومینو-ایپسیکی) در اتصال سالم، انرژی از بند به داخل لایه جسم از دست می‌دهند و تصرف شیرین می‌شوند. اما در اتصال معنوی، بدین‌様یت عدم وجود لایه جسم، دانه بازها دریافتی بیشتر بوده و همچنین پزوهای متلای بیشتری از قسمت مشترک اتصال ایجاد می‌شوند.

واژگان کلیدی: پرورش فراصوتی، اتصالات چسبی، سطوح منحنی، حوادث حباب‌ساز

1. مقدمه
تخاون در بخش‌هایی از زنگ‌های زنده روم‌های همجنون ارتباطات، حملونقل و تجهیزات الکترونیکی و کامپیوتری نمونه‌هایی در مراحل ابتدایی، پیشرفت و ظهور و بررسی فناوری‌های نوین در تمامی ابتدای زندگی بشر احساس می‌شود. نیما و
اضختامهای کم قطعه کردن شاندی مناسب نشود [۶۳]. ماهن (۲۰۱۱) از این خط تأخیری پلی استیکی و آرایه متریسی ۵۲ المانی با فرکانس ۱۵ مگاهرتز برای ارسال فصول مشترک اتصال فولاد و سپس استفاده کرد [۶۷].

در این مقاله از روش‌های مختلف ترکیبی برای ارائه اتصال قابل اطمینان و سریع استفاده شده است. همچنین از ایجاد اتصال و محصولات مختلف از جمله یابه‌پردازی یافته است. در این میان، آزمون‌های مختلف به‌عنوان یکی از آن‌ها تpany از این پروانه‌های گروهی محصول مشترک محسوب می‌شود. ویژگی‌های چنین عدم اسپی سراسری به محصول، زمان‌کشی کاری و اطمینان از نتایج بازاری و امکان استخراج اطلاعات گوناگونی از محصول، سابقه نمایندگی همان روش‌ها در محصول نشان داده. از جمله مهم‌ترین کاربردهای یکی از آن‌ها می‌توان به اتصال الکترونیکی، واحد، سیستم‌های الکترونیکی و پنجره‌های مستقیم گوناگونی یافت. کردن که آزمون فراصوتی (التراسونیک) یکی از مهم‌ترین آماده‌سازی و رایانش غیره‌های گوناگونی وجود دارد که آزمون فراصوتی (التراسونیک) یکی

۲- اتصالات قبی:

استفاده از اتصالات قبی که از مهم‌ترین روش‌های بودن قطعات متنوع مشترک است. شخصی ساختمانی می‌توانند استحکام و در عین حال جدیدی قطعه را به‌عنوان قابل توجهی افزایش دهد و سپس کاهش امکان خرابی تجهیزات حساس در خیب کنند. همچنین، قبی‌های ساختاری قبی است که اتصال فلزات غیرهم‌چنس مانند اتصال آهن‌سوزی به فولاد، نیزی و یا سرب ایفا می‌کند. قبی‌ها از اتصال گوگانی نارنجی به کنی از آنها عبارتند از قبی‌های ایکس، سی‌بی‌اف‌کریبدز، پل کاربردی و از دسترسی، قابلیت فاصله به فاصل، قبی‌های پایه خالی و قبی‌های ساخته‌شده در همان پایین در اتصال ایجاد و با توجه به وسعت مناطق روزه‌های تکیه بر صورتی و می‌توانند اتصال را از یکدیگر تفکیک کرد. از این آنتی‌کارائیق خصوصی، قبی‌های ابزاری تجهیزات صنعتی گوگانی است و از جمله یکی از قبی‌های غیرخرب، به‌عنوان ارزی قدرتمند برای تضمین کیفیت اتصالات قبی مورد استفاده قرار می‌گیرد [۵].

۲-۱- عویب اتصالات قبی

دستگاه‌های عویب اتصالات قبی می‌تواند از دیدگاه‌های متنوعی انجام شود. آذری و کالی این عویب را به دو دسته از فتاوهای نوین است که برای تمامی افراد قابل لمس است. تمامی این تحولات و پیشرفت‌ها در سایه انتقال سیستم‌های تولیدی ممکن شده است. همگام با پیشرفت صنایع و فناوری‌های گوناگونی، نیاز به اطمینان از کیفیت محصولات گسترش روزافزونی یافته است. در این میان، آزمون‌های غیرخرب به‌عنوان اولیه مفید جهت ارزیابی محصولات ضروری محسوب می‌شوند. ویژگی‌های چنین عدم اسپی سراسری به محصول، زمان‌کشی کاری و اطمینان از نتایج بازاری و امکان استخراج اطلاعات گوناگونی از محصول، سابقه نمایندگی همان روش‌ها در محصول نشان داده. از جمله مهم‌ترین کاربردهای یکی از آن‌ها می‌توان به اتصال الکترونیکی، واحد، سیستم‌های الکترونیکی و پنجره‌های مستقیم گوناگونی یافت. کردن که آزمون فراچال (التراسونیک) یکی از مهم‌ترین آماده‌سازی و رایانش غیره‌های گوناگونی وجود دارد که آزمون فراچال (التراسونیک) یکی
کلیه تیم‌های کردناند [5]

۱- عبود حجمی که داخل حجم چسب و جوید دارد.
۲- عبودی که در فرآیند مشترک چسب و ماده چسبند

ایجاد می‌شود.

عبود حجمی سبب کاهش استحکام داخل چسب می‌شود
و عبود فصل مشترک کاهش استحکام اتصال را دری
دارند و بیشتر در اثر ناپایدار بودن فرآیند اتصال وجود
می‌آید عبودی اصلی در اتصالات مایع عیاری‌ترین
تا نبودن تا ناخالص، اتصال ضعیف است. استحکام ضعیف
اتصال و اتصال پوسه‌ای در این بین عبود نابودی
بدین ترتیب انگشتی بیشتر یا علی‌رغم نهایی اتصال از همگی
به‌طور بخشنده است [6].

۴- پرتوهای غوتوپزی
این دسته از پرتوهایی برای انجام پزشکی غوتوپزی استفاده
می‌شوند. در این حالت فضاهای بین قطعه و پرتو از آب
بر می‌شود و در حقیقت آب نقش ماده واسط را ایفا می‌کند.
این روش بدین جذب اثر فشار دست، نتایج دقیق‌تر و
تکرارپذیرتری دارد. آزمون غوتوپزی بدین ماهیت
غیرممسن‌شی می‌تواند روش مناسبی برای انجام از
کرستالهای پیژوالکتریک با فرکانس‌های بالاتر باشد که
یکی از مهم‌ترین ویژگی‌های این روش نیز هیمن است.
آزمون غوتوپزی به‌طور چند روش گوناگون قابل انجام
است، که در ادامه بحث‌اند اشاره می‌شود.

۵- غوتوپزی در مخزن
در این روش، پرتو و پرتو داخل مخزنی پر از آب قرار
داده می‌شود. بیلید بالا، پوش شدن این با مخزن، دمای
قطعه به‌سرعت به دامای شرکنده می‌رسد. با ثابت‌کردن دمای
یکی از منابع ابزار خط آزمایش حذف شده و قابلیت
تکرارپذیری و دقت انجام بیمار پزشکی افزایش می‌یابد. در شکل
۰-۱، نمایی شماتیک از این روش نمایش داده شده است [8].
برگ برونش عبوری استفاده می‌شود، جت بجای آزاد می‌تواند طولی در حدود یک متر را طی کند. به‌دلیل اغتشاش کمی که ممکن است در این روش ایجاد شود، نسبت سیگنال به نویز کمتر از روش غوطه‌وری است. سیستم جت آب معمولاً برای بازرسی مواد با میزان بالا مانند ساخته‌های ساندویچی یا GLARE استفاده می‌شود.

5. محدودیت روش‌های موجود و نیاز به استفاده از روش ژاکوزن
با در نظر گرفتن نیازمندی‌های گوناگونی که در صنایع مختلف برای بازرسی قطعات با ابعاد و اتصال هندسی متفاوت وجود دارد، روش‌های موجود در این شاخصی عیوب در نظر گرفته می‌شود. هر یک از این روش‌ها به‌دلیل محدودیت‌های خاص خود ممکن است قابلیتی به کارگیری در برخی از قطعات را نداشته باشد. بنابراین، فراصوتی تاماسی معمولاً به‌صورت دستی انجام می‌شود، لذا احتمال ایجاد خطای این روش بالاست. از سوی دیگر، امکان استفاده از این روش در سیستمهای خودکار بسیار پایین است و همچنین به‌دلیل ماهیت تاماسی این روش، بازرسی داخلی قطعات که سطح خارجی حساس دارد و یا قطعات که دارای سطوح احتکار و بیچیده‌های هستند، عملاً وجود ندارد و بنابراین روش‌های ژاکوزن بیشتر مورد استفاده قرار می‌گیرد (10). روش غوطه‌وری در مخزون توانسته است مشکل‌های معمولاً با قطعه را حل کند و حتی برای سطوح نجاف و ساده قابلیت اتمام‌پذیری مالی شده باشد. اما این روش تنها برای قطعات قابل استفاده است که با ابعاد مخزون مناسب باشنده و بازرسی قطعات بزرگ نیازمند ساخت مخازن بزرگ و سیستمهای حرکتی با طول کورس بالاست و حتی در برخی موارد از قبیل بازرسی مخازن نفت و گاز، خطوط لوله و قطعات بزرگ هواپیما، این روش قابلیت خود را به‌صورت کامل از دست می‌دهد. علاوه بر این، این روش هم مشابه روش تاماسی، در بازرسی سطوح احتکار و بیچیده

4-2 روش جابجایی (ستون آب)
این روش بیشتر در سیستمهای خودکار استفاده می‌شود. در این روش محفظه‌ریزی، که پرپر در داخل آن قرار می‌گیرد، بر از آب شده و در نهایت سطون از آب وارد محفظه شده و در نهایت از فضای مانند محفظه‌ریزی و قطعه به بیرون جریان می‌یابد. شکل ۳ نمایی شماتیک از این روش را نمایش می‌دهد.

شکل ۱. نمایی شماتیک از سیستم آزمون غوطه‌وری با تکنیک جابجایی

شکل ۲. نمایی شماتیک از سیستم آزمون غوطه‌وری با تکنیک جابجایی

4-3 روش جت آب
در این روش، یک نازل آب در سطح جلوبی پرپر قرار داده می‌شود تا موج فراصوتی را با عاده موردن بازرسی جفت نماید. در این حالت، یک جریان آرام، آب، موج فراصوتی را از پرپر به سطح قطعه هدایت می‌کند. عملکرد این روش تقریباً مشابه روش ستون آب است، با این تفاوت که بیشتر زمانی به‌کار برده می‌شود که جفت‌سازی بیش از معمولاً از جت آب برای بازرسی قطعات مقدار اتصال است. معمولاً از جت آب برای بازرسی قطعات...
محدودیت‌هایی دارد و اغلب برای سطوح تخت یا با احتیاج تاثیب استفاده می‌شود. روش جت آب هم به‌دلیل نیاز به دسترسی به دو طرف قطعه مورد پاره‌سازی عملاً در همه موارد قابل استفاده نیست.

۶. روش پیشنهادی
روش حباب‌سازی، که گاهی به آن روش گوشت‌واری محیطی نیز گفته می‌شود، یک خط تأخیری مشخص از آب را برای روشن‌سازی بازرسی گوناگون از جمله روش بازتابی فرآهم می‌کند. این روش به‌دلیل داشتن مسیر روش فعال برگردد. سرعت بازرسی بالاتری با نسبت به جت آب دارد. از سوی دیگر، قطعات مناسب برای این روش می‌توانند مسطح یا احتکار بسیار مانند بدن‌های هواپیما، البته این روش به‌عنوان برای بازرسی شعاع داخلی وهي خارجی نیز استفاده می‌شود.

بدن سیستم حباب‌سازی ساخته شده، از یک سیلندر با پوسته با استیتیکی تشکیل شده است. در داخل این بدن یک ستون آب در میان پوسته و بروز تربیه شده است. آب به‌طور پوسته بیرون یافته در دنده بی‌پخش ۱۷ برمی‌شود تا ستون آب و حوضچه میان بدن و سطح مورد بازرسی همیشه بر از آب باشد. ستون آب و حوضچه یا که این تعداد است، جفت کنندگی قابل و به‌منظور برای امواج صوتی ارسالی به قطعه و بازگشتی یا از آن فراهم می‌کند. این امر سبب حذف بی‌ظنه‌ها شده از میان فراوصوی به‌شکلی در ناحیه مورد بازرسی اجرای و به ترتیب سیگنال خروجی به‌درستی تولید می‌شود. در شکل ۳، تصویری از ستون آب طراحی شده بای خود بازرسی اتصال‌های انتقالی انجام داده شده است. مطالعه این شکل، بدن‌های سیستم، سیستم‌های بازرسی یا بازرسی اطلاعات از یک خودکار گلی تشکیل شده است. سطح تامس سیلندر با قطعه به‌گونه‌ای طراحی شده است که خود را با انتخاب سطح قطعه بازرسی شورده به‌طور کامل تطبیق دهد و بدن تربیت از عمود‌دان راستای انتشار موج فراوصوی به سطح قطعه اطمینان حاصل و انجام


\[ A_2 = A_1 \frac{T_1 T_2 R_2}{R_1} \times 10^{\frac{L_2}{20^2}} \]

\[ A_3 = A_1 \frac{T_1 T_2 R_2^2}{R_1} \times 10^{\frac{L_3}{20^2}} \]

\[ \frac{A_1}{A_2} = \left( \frac{R_1}{T_1 T_2 R_2} \right) \times 10^{\frac{L_2}{20^2}} \]

هری نوی نایبوستگی در فصل مشترک اتصال وجود دارد.

برای فراوستی پس از عبور از داخل خاک‌آبی‌سوز وارد ماده چسب‌شده و بخش میرایی بالای‌چسب نمی‌تواند از این جهت شود. در تیزی، به داخل آتومی‌کوبی درایافته در این حالت کم حاویت بوده و نسبت دامنه‌ای کوئی برای اتصال درایای نایبوستگی در فصل مشترک فاز با ماده سیگنال ارسالی پس از عبور از خاک‌آبی‌سوز به فاصله‌ای رسیده و در بخش خاک‌آبی ماده آلومینیوم و هوایی بخش اعظمی از سیگنال بی‌باید. بنابراین نسبت دامنه‌ای درایافته با دامنه بالاتری، مقدار بیشتری را در مقایسه با حالت قبلی نشان خواهد داد.

برای دستیابی به نتایج قابل اطمینان، باید با استفاده از نظریه‌های موجود در آزمون فراوستی، قابلیت تفکیک‌کننده میان نواحی سالم و مغز به‌هیچ‌یک باشد. به ترتیب نظارت نظیره‌های ضرایب عمود و باتلاق استفاده می‌شود. در این حالت، نسبت دامنه دامنه از دامنه بالاتری و دامنه ماده آلومینیوم و سالم می‌تواند به سبب فاز سلام به دست آید. در شکل 1، سالeration با دولت اتصال می‌تواند نمایش داده شده است.


\[ \frac{A_1}{A_2} = R_1 \rightarrow A_1 = \frac{A_2}{R_1} \]

شکل 1: نواحی مختلف ماده ارسالی در بخش اتصال چسب

با توجه به شکل و استفاده از روابط موجود برای ضرایب باتلاق و ضرایب اتصال می‌توان روابط 1 تا 4 را استخراج کرد [11]:
شنه است. همچنین برای ایجاد امکان مقايسه پژوهش‌های دريافتی از ناحیه سلام و معیوب، یک ناحیه دارای عیب در انتقال سالم به انتقال معیوب، اعداد پژوهش‌گر را نشان می‌دهد. با توجه به میزان مناسب برای نسبت‌های مختلف دقیقه ناحیه سالم تا ناحیه معیوب در قسمتی از انتقال صوت گرفته است (شکل ۵). لازم به ذکر است که این نتایج در تغییرات معیوب حداکثر سه بار تکرار شده است.

جدول ۱. نتایج حاصل برای محاسبه نسبت‌های دامنه خروجی

<table>
<thead>
<tr>
<th>نوع انتقال</th>
<th>$A_i / A_e$</th>
<th>$A_e / A_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۸۴۸۰</td>
<td>۱/۹۸۷۵</td>
<td></td>
</tr>
<tr>
<td>۱/۹۰۳۸</td>
<td>۱/۹۴۷۹</td>
<td></td>
</tr>
<tr>
<td>۱/۹۹۷۱</td>
<td>۱/۹۹۱۶</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۵. انتقال جیبی انتقال با روش حسابی

با انجام برای کل قطعه پژوهش‌های دریافتی از نواحی گوناگون انتقال ثبت می‌شود. در شکل‌های ۶ و ۷ یک مورد متعدد نمونه‌هایی از پژوهش‌های دریافتی از نواحی دارای انتقال سالم و انتقال معیوب ناسنج داده شده است. ملاحظه می‌شود که پژوهش‌های دریافتی از فصل مشترک اول انتقال (آلمینوم-اپوکسی) از انتقال سالم پس از به‌اتاب متوالی بسیار است و از آن در داخل الیاز جسم دست داده است. اما در انتقال معیوب، باعث عدم وجود لایه جسم پژوهش‌های می‌شود که از فصل مشترک انتقال وجود دارد. نتایج بعید از محاسبه نسبت باتاب دوم فصل مشترک به بازتاب اول و همچنین نسبت بازتاب سوم به اول برای انتقال سالم و معیوب در جدول ۱ آمده است. ملاحظه می‌شود که مقادیر بدست آمده برای هر دو نسبت تعیین‌شده، در انتقال معیوب
 NGO

مختصر آمیز و هزینه ای است، اما به آسانی بررسی کرده و به

نتایج مشابه دست یافتن.


بعندا در آزمایشگاه مهندسی مکانیک دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، 2008.

1. bubbler
2. epoxy adhesives
3. cyanoacrylate adhesives
4. polychloroprene adhesives
5. Solvent Based adhesive
6. discontinuity
7. gross defects
8. poor adhesion
9. poor cohesive strength
10. kissing bonds
11. piezoelectric materials
12. bubbler (water column)
13. laminar stream
14. glass-fiber reinforced aluminum
15. local immersion technique
16. larger active scanning track
17. weeper body